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Abstract

We consider the problem of orienting the edges of a graph so that the length of
a longest path in the resulting digraph is minimum. As shown by Gallai, Roy and
Vitaver, this edge orienting problem is equivalent to finding the chromatic number of
a graph. We study various properties of edge orienting methods in the context of local
search for graph coloring. We then exploit these properties to derive four tabu search
algorithms, each based on a different neighborhood. We compare these algorithms
numerically to determine which are the most promising and to give potential research
directions.

1 Introduction

All graphs in this paper have no loops and no multiple edges. For a graph G, we denote V (G)
its vertex set and E(G) its edge set. A partial graph of G is a graph obtained from G by
removing some edges. A k-coloring of G is a function c : V (G) → {1, . . . , k}. It is said legal
if c(i) 6= c(j) for all edges (i, j) in E(G). The smallest integer k such that a legal k-coloring
exists for G is the chromatic number χ(G) of G. Finding the chromatic number of a given
graph is known as the graph coloring problem, and is NP-hard [5]. Although many exact
algorithms have been devised for this particular problem [2, 7, 8, 9, 10], such algorithms can
only be used to solve small instances.

A directed graph (or just digraph) is a graph with an orientation on each edge. An edge
(u, v) oriented from u to v is called an arc, is denoted u → v, and u is its tail while v is its

head. An orientation of a graph G is a digraph, denoted ~G, obtained from G by choosing an
orientation u → v or v → u for each edge (u, v) ∈ E(G). By removing some arcs in ~G, one

gets a partial digraph of ~G. A path is a digraph, denoted (v0 → · · · → vk−1), with vertices
v0, · · · , vk−1 and arcs vi−1 → vi (i = 1, · · · , k − 1), and its length is its number of vertices.

We denote λ(~G) the length of a longest path in ~G. Also, we denote d+
~G
(v) the length of a

longest path in ~G starting at v, while d−

~G
(v) denotes the length of a longest path ending at

v. Hence, λ(~G) = d−

~G
(u) + d+

~G
(v) for every arc u → v lying on a longest path in ~G.
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A source is a vertex v with d−

~G
(v) = 0 while a sink is a vertex v with d+

~G
(v) = 0. A circuit

is a digraph, denoted (v0 → · · · → vk−1 → v0), and obtained by adding an arc vk−1 → v0 to
a path (v0 → · · · → vk−1). A dicycle is an orientation of a cycle, which means that every

circuit is a dicycle. If a dicycle ~C is not a circuit, then it contains a set A = {v0, · · · , vk−1} of
sources and a set B = {w0, · · · , wk−1} of sinks (k > 0) such that there is a path linking vi to
wi and one linking vi to wi−1 for every i = 0, · · · k−1 (the indices being taken modulo k), and
~C is the union of these paths. We use the notation ~C = (v0 ⇒ w0 ⇐ · · · vk−1 ⇒ wk−1 ⇐ v0).

This is illustrated on Figure 1 where the set of sources on ~C is A = {g, d} and the set of
sinks is B = {b, f}. Notice that the notation is not unique since (g ⇒ b ⇐ d ⇒ f ⇐ g) =
(d ⇒ f ⇐ g ⇒ b ⇐ d) = (g ⇒ f ⇐ d ⇒ b ⇐ g) = (d ⇒ b ⇐ g ⇒ f ⇐ d) in the example of

Figure 1. Notice also that if ~C is a dicycle in a digraph ~G, then a source (sink) in ~C is not

necessarily a source in ~G, as illustrated by vertex d in Figure 1.
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A graph G with 

a cycle C=(b,c,d,f,g,h,b)

A circuit-free orientation G of G

 with a dicycle C=(g    b    d    f    g)

Figure 1. Illustration of a notation

Finally, we denote Ω(G) the set of circuit-free orientations of G and, for a fixed integer k,

we denote Πk(G) the set of circuit-free orientations ~H of a partial graph H of G such that

λ( ~H) ≤ k.

Gallai [4], Roy [11] and Vitaver [13] have independently proven the following famous
theorem.

Theorem 1 [4, 11, 13] The length of a longest path in an orientation of a graph G is at
least equal to the chromatic number of G.

It follows from Theorem 1 that the problem of determining the chromatic number of a
graph G is equivalent to the problem of orienting the edges of G so that the resulting digraph
~G is circuit-free and λ(~G) is minimum. Indeed, given a χ(G)-coloring c of a graph G, one

can easily construct a circuit-free orientation ~G with λ(~G) = χ(G) by simply orienting each
edge (u, v) from u to v if and only if c(u) < c(v). Conversely, given a circuit-free orientation
~G of G, one can build a λ(~G)-coloring of G by assigning to each vertex v a color c(v) equal

to the length d−

~G
(v) of a longest path ending at v in ~G. Hence, one can state the following

corollary of Theorem 1.

Corollary 2 χ(G) = min
~G∈Ω(G)

λ(~G)

It is interesting to note that the problem of determining a graph in Ω(G) with maximum

λ(~G) is also NP-hard since any algorithm that would solve this problem would also solve the
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Hamiltonian path problem which is known to be NP-hard [5]. Indeed, a graph G contains a

Hamiltonian path if and only if its edges can be oriented so that the resulting digraph ~G is
circuit-free and λ(~G) =| V (G) |.

Since exact methods can only solve small graph coloring instances, heuristic methods
are needed to get an upper bound on the chromatic number. As shown in a recent sur-
vey [3], most recent efficient graph coloring heuristics are either local search methods (e.g.,
tabu search, simulated annealing) or hybrid algorithms that combine a local search with a
population-based method (e.g., genetic algorithm, adaptive memory programming). Barbosa

et al. [1] have implemented a genetic algorithm that aims to minimize λ(~G). They consider
a population of graph orientations chosen in Ω(G). Each member of the population is coded
as a partial order of the vertices, where u → v means that u preceeds v. A crossover operator
combines two partial orders of the vertices for creating new members in the population (i.e,

new graph orientations ~G ∈ Ω(G)). To our knowledge, no other evolutionary graph coloring
algorithm based on edge orienting methods has ever been proposed, and we are not aware of
any local search method that uses graph orientations to determine the chromatic number of
a graph. The aim of this paper is to help bridging this gap by providing an analysis of the
main ingredients that may be useful in the design of a local search graph coloring algorithm
based on edge orienting methods.

Local search methods can be described as follows. Let S be the set of solutions to a
combinatorial optimization problem. For a solution s ∈ S, let N(s) denote the neighborhood
of s which is defined as the set of neighbor solutions in S obtained from s by performing
a local change on it. Local search techniques visit a sequence s0, . . . , sn of solutions, where
s0 is an initial solution and si+1 ∈ N(si) (i = 1, . . . , n − 1). When designing a local search
algorithm for solving a particular problem, one has to define the search space to be explored,
the evaluation function to be minimized, and the neighborhood function. This triplet is
called a search strategy. In their recent survey, Galinier and Hertz [3] propose to classify the
search strategies that have proven to be efficient for the graph coloring problem into four
categories :

- The legal strategy: The search space S contains all legal colorings and the goal is to
find a solution c ∈ S that uses as few colors as possible.

- The k-fixed partial legal strategy: The number k of colors is fixed, the search space S
contains all partial legal k-colorings, and the goal is to determine a solution c ∈ S in
which all vertices are colored.

- The k-fixed penalty strategy: The number k of colors is fixed, the search space S contains
all (not necessarily legal) k-colorings, and the goal is to determine a legal k-coloring
c ∈ S.

- The penalty strategy: The search space S contains all (not necessarily legal) colorings
and the goal is to determine a legal coloring c ∈ S that uses as few colors as possible.

There are at least two additional categories of local search strategies based on edge
orienting methods that have never been tested and could prove successful for graph coloring.
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- The total orienting strategy: The search space S contains all circuit-free graph orien-
tations ~G of G (i.e. S = Ω(G)), and the goal is to minimize λ(~G).

- The k-fixed partial orienting strategy: An upper bound k on λ(~G) is fixed, the search

space S contains all circuit-free graph orientations ~H of a partial graph H of G with
λ( ~H) ≤ k (i.e., S = Πk(G)), and the aim is to determine a solution ~H having a
maximum number of arcs.

For the total orienting strategy, a neighbor of a solution ~H ∈ Ω(G) can be obtained
by modifying the orientation of a subset of arcs, without creating circuits. For the k-fixed
partial orienting strategy, a neighbor of a solution ~H ∈ Πk(G) can be obtained by adding
and orienting some edges that belong to G but not to H, and by then removing some arcs
(if necessary) so that the resulting digraph also belongs to Πk(G). In summary, neighbor
solutions in the above orienting strategies are obtained by changing the orientation of some
arcs, or by adding some arcs and removing some others. We study in the next section
some properties related to such changes. In particular, we characterize those that produce a
circuit-free neighbor ~H, and we compare λ(~G) with λ( ~H). This theoretical study will help
us to design and implement four basic tabu search algorithms for graph coloring based on
orienting strategies. The four algorithms are described in Section 3 and compared numeri-
cally in Section 4 in order to determine which ones are the most promising. The algorithms
we present illustrate the kind of methods one can design based on the theoretical results
presented in Section 2. The development of more elaborate approaches is a topic for future
study.

2 Properties

We start this section by giving some properties related to the modification of the orientation
of some arcs in a digraph.

Property 3 Let ~G be a circuit-free orientation of a graph G and let ~H be the digraph
obtained from ~G by changing the orientation of a subset F of arcs. Then ~H contains a
circuit if and only if there is a dicycle ~C = (v0 ⇒ w0 ⇐ · · · vk−1 ⇒ wk−1 ⇐ v0) in ~G such
that no arc on the paths from vi to wi belongs to F and every arc on the paths from vi to
wi−1 belongs to F (i = 0, · · · k − 1).

Proof.

Assume there is a dicycle ~C = (v0 ⇒ w0 ⇐ · · · vk−1 ⇒ wk−1 ⇐ v0) in ~G such that no arc
on the paths from vi to wi belongs to F and every arc on the paths from vi to wi−1 belongs
to F . Then ~C is transformed into a circuit in ~H.

Suppose now that ~H contains a circuit (x0 → · · ·xr−1 → x0). Let I be the set containing
all vertices xi on the circuit such that xi → xi−1 ∈ F and xi+1 → xi /∈ F . Similarly, define
J as the set containing all xj with xj → xj−1 /∈ F and xj+1 → xj ∈ F . Then the circuit in
~H corresponds to a dicycle ~C in ~G with I as set of sources and J as set of sinks. Hence,
~C = (v0 ⇒ w0 ⇐ · · · vk−1 ⇒ wk−1 ⇐ v0) with I = {v0, · · · , vk−1} and J = {w0, · · · , wk−1}.

The next two corollaries are about the special case where | F |= 1.
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Corollary 4 Let ~G be a circuit-free orientation of a graph G and let ~H be the digraph
obtained from ~G by changing the orientation of exactly one arc from u → v to v → u. Then
~H contains a circuit if and only there is a path of length at least 3 linking u to v in ~G.

Proof. According to Property 3, ~H contains a circuit if and only if there is a dicycle
(v0 ⇒ w0 ⇐ v0) in ~G. Since G has no multiple edges, the path from v0 to w0 in ~G has length
at least 3.

Corollary 5 If ~H if obtained from a circuit-free orientation ~G of G by changing the orien-
tation of exactly one arc u → v with d−

~G
(v) = d−

~G
(u) + 1, then ~H is circuit-free.

Proof. From the previous Corollary, it is sufficient to observe that there is no path of length
> 2 linking u to v in ~G, else d−

~G
(v) ≥ d−

~G
(u) + 2.

The next properties deal with the special case where F contains arcs lying on longest paths.
The first part of Property 6 (i.e., ~H is circuit-free) was also proved in [12].

Property 6 If ~H if obtained from a circuit-free orientation ~G of G by changing the orien-
tation of exactly one arc u → v on a longest path, then

• ~H is circuit-free

• λ( ~H) ≤ λ(~G) + 2.

• if λ( ~H) > λ(~G) then at least one the following situations must occur:

- there is a second arc w → v entering v that also belongs to a longest path in ~G;

- there is a second arc u → w leaving u that also belongs to a longest path in ~G.

Proof. Since u → v is on a longest path in ~G, there is no path of length > 2 linking u to v,
and we therefore know from Corollary 4 that ~H is circuit-free.

Since d+
~G
(u) = d+

~G
(v)+1, d−

~G
(v) = d−

~G
(u)+1, d−

~H
(v) ≤ d−

~G
(v), and d+

~H
(u) ≤ d+

~G
(u), we know

that the length of a longest path in ~H that contains v → u has length d−

~H
(v) + d+

~H
(u) ≤

d−

~G
(u) + d+

~G
(v) + 2 = λ(~G) + 2. Since all paths in ~H that do not contain v → u have a length

≤ λ(~G), we conclude that λ( ~H) ≤ λ(~G) + 2.

If λ( ~H) > λ(~G), then every longest path in ~H necessarily contains the arc v → u, hence

λ( ~H) = d−

~H
(v) + d+

~H
(u). If u → v is the unique arc entering v and the unique arc leaving u

that belongs to a longest path in ~G, then d−

~H
(v) ≤ d−

~G
(v) − 1 and d+

~H
(u) ≤ d+

~G
(u) − 1, which

means that λ( ~H) ≤ d−

~G
(v) + d+

~G
(u) − 2 = λ(~G), a contradiction.

When designing a local search algorithm, it is important to ensure that given any ini-
tial solution s0, there is a sequence of neighbor solutions leading to an optimal one (i.e., a
sequence s0, · · · , sn with si ∈ N(si−1) and where sn is optimal). The next property demon-
strates that this requirement is satisfied for the total orienting strategy when a neighbor is
obtained by modifying the orientation of one arc on a longest path. For a digraph ~H ∈ Ω(G),

let N1( ~H) denote the set of digraphs that can be obtained from ~G by modifying the orienta-

tion of exactly one arc on a longest path in ~H. We know from Property 6 that every digraph
in N1( ~H) belongs to Ω(G).
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Property 7 For every digraph ~G ∈ Ω(G) there is a sequence ( ~H0, · · · , ~Hn) of digraphs such

that ~H0 = ~G, λ( ~Hn) = χ(G), and each ~Hi belongs to N1( ~Hi−1).

Proof. Let ~G∗ be an orientation of G with λ(~G∗) = χ(G). Also, for an orientation
~Hi ∈ Ω(G), let A( ~Hi) denote the set of arcs in ~Hi that have the opposite orientation in
~G∗. If λ( ~Hi) > χ(G), then every longest path in ~Hi contains at least one arc in A( ~Hi). Let
~Hi+1 be the digraph obtained from ~Hi by changing the orientation of one such arc. One
can repeat this process until one reaches a digraph ~Hn with λ( ~Hn) = χ(G). This will occur

in at most | A( ~H0) | steps since | A( ~Hi+1) |=| A( ~Hi) | −1 and ~Hn = ~G∗ when | A( ~Hn) |= 0.

Notice that for reaching an optimal solution ~Hn starting from a solution ~H0, it can be
necessary to visit a solution ~Hi with λ( ~Hi) > λ( ~H0). This is illustrated in Figure 2. The

digraph ~H0 has two longest paths (e → d → b → a) and (e → c → b → a) of length 4.
One can easily verify that by changing the orientation of e → d, e → c, d → b, or c → b,
one gets a digraph ~H with a longest path (c → e → d → b → a) of length λ( ~H) = 5. The

unique arc on a longest path in ~H0 that can be reversed without increasing the length of a
longest path is the arc b → a. But the digraph obtained by reversing this arc is similar to
~H0, where a and b have exchanged their role. Hence, in order to reach an optimal orientation
~Hn of G with λ( ~Hn) = 3 (as the rightmost digraph of Figure 2 that contains two longest
paths (c → b → a) and (d → b → a)), one has to visit a digraph with longest path of length

5 > 4 = λ( ~H0).

d

e

c

ba

d

e

c

ba

An orientation H0

with λ(H0)=4 

An optimal orientation H2

with λ(H2)=3 

d

e

c

ba

A graph G

d

e

c

ba

A neighbor solution H1

with λ(H1)=5 

Figure 2. A sequence of neighbor solutions

For a digraph ~G, let W (~G) denote its set of vertices on a longest path. Also, for a vertex

v ∈ W (~G)), let A−

~G
(v) and A+

~G
(v) denote the set of arcs on longest paths in ~G having v as

head and as tail, respectively.

Property 8 Let ~G be a circuit-free orientation of G, and let v be a vertex in W (~G). If ~H

is obtained from ~G by changing the orientation of a subset of arcs in A−

~G
(v) or a subset of

arcs in A+
~G
(v), then ~H is also circuit-free.

Proof. Let F be the set of arcs in ~G that have been modified in ~G to get ~H. If ~H contains
a circuit, then we know from Property 3 that there is a dicycle ~C = (v0 ⇒ w0 ⇐ · · · vk−1 ⇒

wk−1 ⇐ v0) in ~G such that no arc on the paths from vi to wi belongs to F and every arc on
the paths from vi to wi−1 belongs to F . Since all arcs in F have the same tail (or the same

head), such a dicycle ~C contains only one arc of F , which means that ~C is the union of the

arc v0 → w0 in F with a directed path ~P linking v0 to w0 having no arc in F . Since G has
no multiple edges, ~P has length at least three, which contradicts the fact that v0 → w0 is on
a longest path in ~G.
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Property 9 Let ~G be a circuit-free orientation of G, and let v be a vertex in W (~G). If ~H is

obtained from ~G by changing the orientation of all arcs in A−

~G
(v) or all arcs in A+

~G
(v), then

• ~H is circuit-free;

• λ( ~H) ≤ λ(~G) + 1.

Proof. We know from Property 8 that ~H is circuit-free. Let ~P be a longest path in ~H.
If all arcs on ~P have the same orientation as in ~G, then λ( ~H) ≤ λ(~G). Otherwise, let F

be the set of arcs that have been modified in ~G to get ~H. Since all arcs in F have the
same tail or the same head, ~P contains exactly one arc x → y that was originally oriented
from y to x in ~G. Hence, v = x and F = A−

~G
(v), or v = y and F = A+

~G
(v). We therefore

have either d−

~H
(x) < d−

~G
(x) and d+

~H
(y) ≤ d+

~G
(y), or d+

~H
(y) < d+

~G
(y) and d−

~H
(x) ≤ d−

~G
(x). So

λ( ~H) = d−

~H
(x) + d+

~H
(y) < d−

~G
(x) + d+

~G
(y) = λ(~G) + 2.

We now prove a result similar to Property 7. For a digraph ~H ∈ Ω(G), let N2( ~H) denote

the set of digraphs that can be obtained from ~G by changing the orientation of all arcs in
A−

~G
(v) or all arcs in A+

~G
(v), for some v ∈ W (~G). We know from Property 9 that every digraph

in N2( ~H) belongs to Ω(G).

Property 10 For every ~G ∈ Ω(G) there is a sequence ( ~H0, · · · , ~Hn) of digraphs such that
~H0 = ~G, λ( ~Hn) = χ(G), and each ~Hi belongs to N2( ~Hi−1).

Proof. Let ~G∗ be an orientation of G with λ(~G∗) = χ(G). Also, for an orientation ~Hi ∈

Ω(G), let A( ~Hi) denote the set of arcs in ~Hi that have the opposite orientation in ~G∗. If

λ( ~Hi) > χ(G), then there is a vertex v ∈ W ( ~Hi)) such that all arcs in A+
~Hi

(v) have the

opposite orientation in ~G∗. Indeed, assume by contradiction that each vertex v ∈ W ( ~Hi))

with A+
~Hi

(v) 6= ∅ is the tail of at least one arc v → w in ~Hi that has the same orientation

as in ~G∗. Consider any vertex v1 in ~Hi with d+
~Hi

(v1) = λ( ~Hi). Then each vertex vj (j =

1, · · · , λ( ~Hi) − 1) is the tail of an arc vj → vj+1 in A+
~Hi

(vj) that has the same orientation as

in ~G∗. Hence (v1, · · · , vλ( ~Hi)
) is a path of length λ( ~Hi) > λ(~G∗) in ~G∗, a contradiction.

So let v be a vertex in W ( ~Hi)) such that all arcs in A+
~Hi

(v) have the opposite orientation

in ~G∗, and let ~Hi+1 be the digraph obtained from ~Hi by changing the orientation of all arcs
in A+

~Hi

(v). One can repeat this process until one reaches a digraph ~Hn with λ( ~Hn) = χ(G).

This will occur in at most | A( ~H0) | steps since | A( ~Hi+1) |<| A( ~Hi) | and ~Hn = ~G∗ when

| A( ~Hn) |= 0.

Notice that we could have proven the above Property by showing, in a very similar way,
that if λ( ~Hi) > χ(G), then there is a vertex v ∈ W ( ~Hi)) such that all arcs in A−

~Hi

(v) have

the opposite orientation in ~G∗.

For a digraph ~G and an integer ℓ ∈ {1, · · · , λ(~G) − 1}, let ~Lℓ(~G) denote the partial

digraph of ~G containing only those arcs u → v on longest paths such that d−

~G
(u) = ℓ and

d−

~G
(v) = ℓ + 1.
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Property 11 Let ~G be a circuit-free orientation of a graph G, and consider any integer
ℓ ∈ {1, · · · , λ(~G) − 1}. If ~H if obtained from ~G by changing the orientation of all arcs in a

subset of connected components of ~Lℓ(~G), then

• ~H is circuit-free;

• λ( ~H) ≤ λ(~G).

Proof. Let F denote the set of arcs that have been modified in ~G to obtain ~H. If ~H
contains a circuit, then we know from Property 3 that there is a dicycle ~C = (v0 ⇒ w0 ⇐

· · · vk−1 ⇒ wk−1 ⇐ v0) in ~G such that no arc on the paths from vi to wi belongs to F and
every arc on the paths from vi to wi−1 belongs to F . Hence, d−

~G
(vi) = ℓ and d−

~G
(wi) = ℓ + 1

for i = 0, · · · , k − 1, which means that each path from vi to wi and from vi to wi−1 contains
a single arc. Since G has no multiple edges, we have k > 0. So there are two longest paths
(x1 → · · · → xℓ = v0 → xℓ+1 = wk−1 → · · · → xλ( ~G)) and (y1 → · · · → yℓ = v1 → yℓ+1 =

w0 → · · · → yλ( ~G)) in ~G containing v0 → wk−1 and v1 → w0, respectively. But this means

that (x1 → · · · → xℓ = v0 → yℓ+1 = w0 → · · · → yλ( ~G)) is a longest path in ~G containing

v0 → w0, which implies that v0 → w0 is in the same connected component of ~Lℓ(~G) as

v0 → wk−1 and v1 → w0. Hence, v0 → w0 ∈ F , a contradiction. So ~H is circuit-free.

Assume now λ( ~H) > λ(~G) and let ~P = (x1 → · · · → xk) be a path in ~H of length

k > λ(~G). Let A denote the set of indices i such that xi+1 → xi ∈ F . We have | A |≥ 1, else
~P also exists in ~G. So let i be the smallest element in A. This means that d−

~G
(xi) = ℓ + 1,

d−

~G
(xi+1) = ℓ, and there is a longest path (y1 → · · · → yℓ = xi+1 → yℓ+1 = xi → · · · → yλ( ~G))

in ~G containing the arc xi+1 → xi. Suppose | A |> 1 and let j be the smallest element in
A larger than i. Then there is a longest path (z1 → · · · → zℓ = xj+1 → zℓ+1 = xj → · · · →

zλ( ~G)) in ~G containing the arc xj+1 → xj. Since all arcs xr → xr+1 of ~P with i < r < j are

also in ~G, while d−

~G
(xi+1) = ℓ and d−

~G
(xj) = ℓ + 1, we necessarily have j = i + 2. Hence,

(y1 → · · · → yℓ = xi+1 → zℓ+1 = xi+2 → · · · → zλ( ~G)) is a longest path in ~G containing the
arc xi+1 → xi+2. But this means that xi+1 → xi+2 is in the same connected component of
~Lℓ(~G) as xi+1 → xi and xj+1 → xj. Hence, xi+1 → xi+2 ∈ F , a contradiction.

So we know that A = {i} (i.e., A contains exactly one element). Since the path

(x1 → · · · → xi = yℓ+1 → · · · → yλ( ~G)) in ~G is of length i + λ(~G) − (ℓ + 1), we neces-
sarily have i ≤ ℓ + 1. If i = ℓ + 1 then xi−1 → xi is in the same connected component of
~Lℓ(~G) as xi+1 → xi, which means that xi−1 → xi ∈ F , a contradiction. We therefore have
i ≤ ℓ. Moreover, since (y1 → · · · → yℓ = xi+1 → · · · → xk) is a path of length ℓ + k − (i + 1)

in ~G, we have k − i ≤ λ(~G) − ℓ + 1. Also, if k − i = λ(~G) − ℓ + 1 then xi+1 → xi+2 is in

the same connected component of ~Lℓ(~G) as xi+1 → xi, which means that xi+1 → xi+2 ∈ F ,

a contradiction. So finally, k − i ≤ λ(~G) − ℓ, which implies that ~P is a path of length

k = i + (k − i) ≤ ℓ + λ(~G) − ℓ = λ(~G), a contradiction.

Let N3( ~H) denote the set of digraphs that can be obtained from ~H by choosing an

integer ℓ ∈ {1, · · · , λ( ~H)− 1}, and by changing the orientation of all arcs in a subset of con-

nected components of ~Lℓ( ~H). One could think about proving a result similar to Properties

7 and 10, but with ~Hi ∈ N3( ~Hi−1). However, the example in Figure 3 demonstrates that

8



there are digraphs ~H ∈ Ω(G) such that there are no sequences ( ~H0, · · · , ~Hn) with ~H0 = ~H,
~Hi ∈ N3( ~Hi−1)(i = 1, · · ·n), and λ( ~Hn) = χ(G). The left graph corresponds to a digraph ~H

with λ( ~H) = 4. In order not to overload the drawing, we indicate the value d−

~H
(v) of each

vertex v instead of representing each arc as a directed line. In other words, each arc should
be directed from the smallest label to the largest one. As shown in Figure 3, each digraph
~Lℓ( ~H) (ℓ = 1, 2, 3) contains exactly one connected component, and it is easy to verify that all

digraphs in N3(~G) are equivalent to ~H, where the roles of the vertices with label d−

~H
(v) = ℓ

are permuted with those with label d−

~H
(v) = ℓ + 1. In summary, all digraphs in a sequence

( ~H0, ~H1, · · · ) with ~H0 = ~H and ~Hi ∈ N3( ~Hi−1) are equivalent to ~H and have a longest path

of length λ(Hi) = 4. However, an optimal orientation ~G of G with λ(~G) = 3 is represented
on the right of Figure 3.
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4
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1 2 3

3 2 1

1

2

3

3

2

1

1 1 1

2

2

2

3 3 3

2

2

2

3 3

4

4

4

3

A circuit-free digraph H L1(H) L2(H) L3(H) An optimal orientation G

Figure 3. Illustration of the total orienting strategy with neighborhood N3

We now give properties related to the addition or the removal of arcs.

Property 12 Let ~G be a circuit-free orientation of a graph G, and let u and v be two non-
adjacent vertices in G. If d−

~G
(u) ≤ d−

~G
(v) + 1 then the graph ~H obtained by adding an arc

u → v in ~G is circuit-free.

Proof. If ~H contains a circuit ~C = (x0 → · · · → xk → x0), then ~C contains the arc
u → v. Without loss of generality, we may assume xk = u and x0 = v. But this means that
(x0 → · · · → xk) is a path in ~G. Since u is not adjacent to v in G, we have k > 1 which
means that d−

~G
(u) > d−

~G
(v) + 1.

By adding an arc between two non-adjacent vertices in a digraph ~G, one gets a digraph
~H. If ~H is circuit-free, then λ( ~H) ≥ λ(~G). The next property indicates when λ( ~H) is strictly

larger than λ(~G).

Property 13 Let ~G be a circuit-free orientation of a graph G, and let ~H be a circuit-free
digraph obtained from ~G by adding an arc u → v between two non-adjacent vertices u and v
of G. Then λ( ~H) > λ(~G) if and only if d−

~G
(u) + d+

~G
(v) > λ(~G).

Proof. λ( ~H) > λ(~G) if and only if there is a longest path in ~H containing u → v and having

a length strictly larger than λ(~G). It is now sufficient to observe that the length of such a
path is equal to d−

~G
(u) + d+

~G
(v).
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Corollary 14 Let ~G be a circuit-free orientation of a graph G, and let ~H be a circuit-free
digraph obtained from ~G by adding an arc u → v between two non-adjacent vertices u and v
of G with d−

~G
(u) < d−

~G
(v). Then λ( ~H) = λ(~G).

Proof. Since λ(~G) ≥ d−

~G
(v)+d+

~G
(v)−1, we have d−

~G
(u)+d+

~G
(v) ≤ d−

~G
(u)−d−

~G
(v)+λ(~G)+1 ≤

λ(~G). From Property 13, we conclude that λ( ~H) = λ(~G).

A digraph ~H in Πk(G) is said maximal if no arc can be added to ~H so that the resulting
digraph also belongs to Πk(G).

Property 15 Let ~H be a maximal digraph in Πk(G), and let u and v be two vertices that
are adjacent in G but not in H. Then d−

~H
(u) = d−

~H
(v).

Proof. If d−

~H
(u) < d−

~H
(v), then we know from Property 12 and Corollary 14 that the graph

obtained by adding the arc u → v in ~H also belongs to Πk(G). This contradicts the maxi-

mality of ~H in Πk(G), and we therefore have d−

~H
(u) ≥ d−

~H
(v). By permuting the roles of u

and v, we also have d−

~H
(u) ≤ d−

~H
(v).

Property 16 Let ~H be a maximal digraph in Πk(G), and let ~H ′ be a digraph obtained from
~H by adding and orienting an edge that belongs to G but not to H. Then

• ~H ′ is circuit-free;

• λ( ~H ′) > k.

Proof. Let u → v be the arc that has been added to ~H to obtain ~H ′. We know from
Property 15 that d−

~H
(u) = d−

~H
(v). Hence, there is no path from v to u in ~H, which means

that ~H ′ is circuit-free. Since ~H is maximal in Πk(G), we therefore have λ( ~H ′) > k.

By removing some arcs from a digraph ~G, one gets a digraph ~H with λ( ~H) ≤ λ(~G). The

next Property indicates when λ( ~H) is strictly smaller than λ(~G).

Property 17 Let ~H be the digraph obtained by removing a subset F of arcs from an orien-
tation ~G of G. Then λ( ~H) < λ(~G) if and only if every longest path in ~G has at least one
arc in F .

Proof. If there is a longest path in ~G with no arc in F , then this path also exists in ~H
which means that λ( ~H) = λ(~G). Otherwise, all paths in ~H have a length strictly smaller

than λ(~G).

We close this section with a property that demonstrates a result similar to Properties 7
and 10, but for the k-fixed partial orienting strategy, where a neighbor is obtained by adding
an arc and by removing some others so that the resulting digraph belongs to Πk(G). More

precisely, for a digraph ~H ∈ Πk(G), let N4( ~H) be the set of digraphs ~H ′ constructed from
~H as follows.
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1. A maximal digraph ~D in Πk(G) is first obtained from ~H by adding arcs that create no

circuits and no paths of length > k. Notice that ~D = ~H if ~H is already maximal in
Πk(G).

2. If ~D ∈ Ω(G), then the neighbor ~H ′ ∈ N4( ~H) of ~H is defined equal to ~D.

If ~D /∈ Ω(G), a digraph ~D′ is built from ~D by adding and orienting an edge that

belongs to G but not to D. We know from Property 16 that ~D′ is circuit-free but
contains paths of length > k. The neighbor ~H ′ ∈ N4( ~H) of ~H is then obtained from
~D′ by removing a minimal (inclusion-wise) set of arcs so that no path in ~H ′ has length
> k.

Property 18 Let G be a graph and let k be an integer larger than or equal to χ(G). For every
~H ∈ Πk(G) there is a sequence ( ~H0, · · · , ~Hn) of digraphs such that ~H0 = ~H, ~Hn ∈ Ω(G),

and each ~Hi belongs to N4( ~Hi−1).

Proof. Let ~G∗ be a circuit-free orientation of G with λ(~G∗) ≤ k. Also, for a digraph
~H ∈ Πk(G), let B( ~H) denote the set of arcs in ~H that are oriented as in ~G∗. Let ~Di be a

maximal digraph in Πk(G) obtained from ~Hi by adding arcs that create no circuits and no

paths of length > k. We have | B( ~Di) |≥| B( ~Hi) |. If ~Di ∈ Ω(G) then define ~Hi+1 equal to
~Di, else let ~D′

i denote the digraph obtained from ~Di by adding an arc u → v of ~G∗ between
two non adjacent vertices u and v in ~Di. We know from Property 16 that ~D′

i has no circuits
but has paths of length > k. These too long paths do not exist in ~G∗ and can therefore
be removed from ~D′

i by deleting a minimal (inclusion-wise) set of arcs x → y so that ~G∗

contains the opposite arc y → x. After all these removals, one gets a digraph ~Hi+1 with
| B( ~Hi+1) |=| B( ~D′

i) |=| B( ~Di) | +1 ≥| B( ~Hi) | +1. One can repeat this process until one

reaches a digraph ~Hn ∈ Ω(G). This will occur in at most | E(G) | − | B( ~H0) | steps since
~Hn = ~G∗ when | B( ~Hn) |=| E(G) | .

3 Four tabu search algorithms

Tabu search is one of the most famous local search techniques. It was introduced by Glover
in 1986. A description of the method and its concepts can be found in [6]. For a solution s in
the search space S, its neigbhorhood N(s) is defined as the set of solutions s′ ∈ S obtained
from s by performing a local change m on it. We denote s′ = s ⊕ m. A basic tabu search is
described in Figure 4.

Choose an initial solution s; set TL = ∅ (tabu list); set s∗ = s (best solution)
Repeat the following until a stopping criterion is met

• Determine a best solution s′ ∈ N(s) such that either s′ = s⊕m with m /∈ TL or s′ is better
than s∗

• If s′ is better than s∗ then set s∗ := s′

• Set s := s′ and update TL

Figure 4 : Basic tabu search
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In this section, we describe four tabu search algorithms for the graph coloring problem.
Three of them use the total orienting strategy, and one uses the k-fixed partial orienting
strategy. In order to describe these algorithms, it is sufficient to clearly define the search
space S, the objective function to be minimized, the neighborhood of each solution, and the
contents of the tabu list TL.

For a circuit-free digraph ~G, we denote

• W (~G) its set of vertices on longest paths;

• L(~G) its set of arcs on longest paths;

• A−

~G
(v) the set of arcs in L(~G) having vertex v as head, and A+

~G
(v) the set of arcs in

L(~G) having vertex v as tail (see Section 2);

• ~Lℓ(~G) the partial digraph of ~G containing only those arcs u → v on longest paths such

that d−

~G
(u) = ℓ and d−

~G
(v) = ℓ + 1, where ℓ is an integer in {1, · · · , λ(~G) − 1} (see

Section 2);

• N1(~G) the set of digraphs obtained from ~G by changing the orientation of exactly one

arc in L(~G);

• N2(~G) the set of digraphs obtained from ~G by choosing a vertex v in W (~G) and by
changing the orientation of all arcs in A−

~G
(v), or of all arcs in A+

~G
(v);

• N3(~G) the set of digraphs obtained from ~G by choosing a number ℓ ∈ {1, · · · , λ(~G)−1}
and by changing the orientation of all arcs in a subset of connected components of
~Lℓ(~G).

We known from Properties 6, 9, and 11 that all digraphs in Ni(~G) (i = 1, 2, 3) are
circuit-free. Moreover,

• λ( ~H) ≤ λ(~G) + 2 for all ~H ∈ N1(~G);

• λ( ~H) ≤ λ(~G) + 1 for all ~H ∈ N2(~G);

• λ( ~H) ≤ λ(~G) for all ~H ∈ N3(~G).

The first tabu search algorithm, called TABU 1, has Ω(G) as search space and uses neigh-

borhood N1. The objective is to determine an orientation ~G of G with minimum λ(~G). Since
many orientations of G may have longest paths of the same length, we discriminate two ori-
entations ~G and ~H with λ(~G) = λ( ~H) by counting their number of arcs on longest paths.

More precisely, a solution ~G is better than a solution ~H if and only if λ(~G) < λ( ~H) or

λ(~G) = λ( ~H) and | L(~G) |<| L( ~H) |. The tabu list contains edges with the meaning that it

is forbidden to change their orientation. When performing a move from a solution ~G to a
neighbor solution ~H ∈ N1(~G), the orientation of an arc u → v is changed and the edge (u, v)

is introduced in the tabu list TL. We have proved in Property 7 that for every ~G ∈ Ω(G)

there is a sequence ( ~H0, · · · , ~Hn) of digraphs such that ~H0 = ~G, λ( ~Hn) = χ(G), and each ~Hi

belongs to N1( ~Hi−1) (i = 1, · · · , n).

The second tabu search algorithm, called TABU 2, also has Ω(G) as search space but

uses neighborhood N2. As for TABU 1, a solution ~G is better than a solution ~H if and only
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if λ(~G) < λ( ~H) or λ(~G) = λ( ~H) and | L(~G) |<| L( ~H) |. When a neighbor ~H ∈ N2(~G) of

a solution ~G is obtained by changing the orientation of all arcs u → v in A−

~G
(v), the pair

(v, +) is introduced in the tabu list TL, with the meaning that it is now forbidden for several

iterations to change the orientation of an arc having v as tail. Similarly, when ~H is obtained
from ~G by changing the orientation of all arcs v → w in A+

~G
(v), the pair (v,−) is introduced

in TL in order to forbid the change of the orientation of an arc having v as head. We have
proved in Property 10 that for every ~G ∈ Ω(G) there is a sequence ( ~H0, · · · , ~Hn) of digraphs

such that ~H0 = ~G, λ( ~Hn) = χ(G), and each ~Hi belongs to N2( ~Hi−1) (i = 1, · · · , n).

The third tabu search algorithm that uses the total orienting strategy is called TABU 3.
As for TABU 1 and TABU 2, the solution space S is Ω(G), and a solution ~G is better than

a solution ~H if and only if λ(~G) < λ( ~H) or λ(~G) = λ( ~H) and | L(~G) |<| L( ~H) |. However,
the neighborhood in this case is N3. The tabu list TL contains edges with the meaning
that it is forbidden to move from a solution ~G to a solution ~H ∈ N3(~G) if such a move
requires to change the orientation of at least one edge in TL. When performing a move from
a solution ~G to a neighbor solution ~H ∈ N3(~G), some edges change their orientation, and
all these edges are introduced in the tabu list TL. As shown in the previous section, there
are orientations ~G ∈ Ω(G) for which there is no sequence ( ~H0, · · · , ~Hn) of digraphs with
~H0 = ~G, λ( ~Hn) = χ(G), and each ~Hi belongs to N3( ~Hi−1).

The fourth and last tabu search algorithm, called TABU 4, is based on the k-fixed partial
orienting strategy. It works with a fixed integer k and tries to determine an orientation ~G
of a given graph G so that λ(~G) ≤ k. The search space S is Πk(G), and a solution is better

than another one if and only if it contains more arcs. A neighbor ~H ′ ∈ N4( ~H) of a solution
~H is obtained as follows (see also Section 2). A maximal digraph ~D in Πk(G) is first obtained

from ~H by adding arcs that create no circuits and no paths of length > k. If ~D ∈ Ω(G),

then the neighbor ~H ′ of ~H is defined equal to ~D and is optimal since it contains | E(G) |

arcs. A new search can therefore be initiated with a smaller value of k. If ~D /∈ Ω(G), a

digraph ~D′ is built from ~D by adding and orienting an edge that belongs to G but not to D.
We know from Property 16 that ~D′ is circuit-free but contains paths of length > k. Finally,
the neighbor ~H ′ ∈ N4( ~H) of ~H is obtained from ~D′ by removing a minimal (inclusion-wise)

set of arcs so that no path in ~H ′ has length > k. The unique arc that is added to ~D to
obtain ~D′ is introduced in the tabu list TL. This list contains arcs that are not allowed to
be removed for several iterations. We have proved in Property 18 that for every ~H ∈ Πk(G)

there is a sequence ( ~H0, · · · , ~Hn) of digraphs such that ~H0 = ~H, ~Hn ∈ Ω(G), and each ~Hi

belongs to N4( ~Hi−1).

4 Computational experiments and conclusions

The objective of the computational experiments is to compare the four algorithms described
in the last section. More specifically, we would like to have indications about the relative effi-
ciency of the different neighborhoods. Hence, the computational experiments are not meant
to be exhaustive, but rather indicative of the behavior of the algorithms. These results are
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nonetheless very useful, as they will help to orient future research on the development of
more elaborate algorithms.

To test the four algorithms on a graph G, we consider the circuit-free orientation ~G0 of
G obtained by labelling the vertices of G from 1 to | V (G) |, and by orienting each edge
(u, v) from u to v if and only if u has a smaller label than v. TABU 1, TABU 2 and TABU 3

are all run for 100,000 iterations starting from ~G0, and we report the smallest length of the
longest path ever encountered during the search.

The test procedure is a little bit different for TABU 4. We first fix k = λ(~G0) − 1 and

construct a digraph ~H by removing from ~G0 a minimal (inclusion-wise) subset of arcs so that

λ( ~H) = k. If TABU 4 is able to produce a digraph ~G ∈ Ω(G) in less than 100,000 iterations,

then we decrease k by one unit, we build a new initial solution ~H by removing from ~G a
minimal (inclusion-wise) subset of arcs so that λ( ~H) = k, we reset the iteration counter to
zero, and start a new search. We report the smallest value k for which 100,000 iterations
were sufficient for TABU 4 to produce a solution ~H ∈ Ω(G) with λ( ~H) = k.

We compare the four tabu search algorithms on ten random graphs with edge density
d = 0.5. These graphs are obtained by linking a pair of vertices by an edge with probability
0.5, independently for each pair. It is known in the graph coloring community that ran-
dom graphs with d = 0.5 are hard to color. Five of our instances have 50 vertices and are
labelled G50,i (i = 1, · · · , 5) while the five other graphs have 100 vertices and are labelled
G100,i (i = 1, · · · , 5). For comparison, we also indicate the number of colors used by Tabucol,
which is considered as one of the most simple and efficient tabu search coloring algorithm
[3]. All results are given in Table 1.

It clearly appears that TABU 2 is not competitive at all. TABU 1 and TABU 4 give simi-
lar results, with a slight advantage for TABU 4. The best tabu search with an edge orienting
strategy is indisputably TABU 3 which is even competitive with Tabucol on graphs with 50
vertices. Notice that TABU 3 is the unique tabu search algorithm studied in this paper for
which the search space is not connected (see the example on Figure 3).

Ten graphs is of course a small test set for comparing heuristic methods. We think how-
ever that these limited experiments give a clear indication on which strategies seem to be
the most promising. For the total orienting strategy, the reversal of arcs on longest paths
between successive colors clearly gives better results than the reversal of a single arc on a
longest path. Also, the reversal of a set of arcs on longest paths having all the same tail or
the same head does not seem to be an efficient strategy. The unique tabu search algorithm
that uses the k-fixed partial orienting strategy is TABU 4, and we have shown that it is ranked
second among the four tested algorithms.

More experiments of course still have to be performed, and the combination of an edge
orienting strategy with a more classical graph coloring algorithm would also be an interesting
research subject. This will be the topic of future research based on the theoretical and
experimental results contained in this paper.
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Graph TABU 1 TABU 2 TABU 3 TABU 4 Tabucol

G50,1 13 19 10 12 10
G50,2 13 16 9 13 9
G50,3 14 16 10 13 10
G50,4 13 14 9 12 9
G50,5 12 15 9 12 9
G100,1 27 34 16 25 15
G100,2 28 38 16 25 16
G100,3 27 36 16 25 15
G100,4 27 32 15 25 15
G100,5 26 34 16 26 15

Table 1: Comparison of five tabu search algorithms on ten graphs.
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