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Abstract

This paper presents algorithms to find vertex-critical and edge-
critical subgraphs in a given graph G, and demonstrates how these
critical subgraphs can be used to determine the chromatic number of
G. Computational experiments are reported on random and DIMACS
benchmark graphs to compare the proposed algorithms, as well as to
find lower bounds on the chromatic number of these graphs. We im-
prove the best known lower bound for some of these graphs, and we
are even able to determine the chromatic number of some graphs for
which only bounds were known.
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1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set
E. A k-coloring of G is a function c : V → {1, . . . , k}. It is said legal if
c(i) 6= c(j) for all edges (i, j) in E. The smallest integer k such that a legal
k-coloring exists for G is the chromatic number χ(G) of G. Finding the
chromatic number of a given graph is known as the graph-coloring problem,
and is NP-hard [8]. Although many exact algorithms have been devised for
this particular problem [2, 18, 14, 16, 11], such algorithms can only be used
to solve small instances. Heuristics coloring algorithms [5, 6, 12, 20], on the
other hand, can be used on much larger instances, but only to get an upper
bound on χ(G).
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Figure 1: A vertex-4-critical subgraph that is not edge-4-critical

1.1 Preliminary definitions

A graph G is vertex-critical if χ(H) < χ(G) for every subgraph H ⊂ G
obtained by removing any vertex from G. Similarly, G is edge-critical if
removing any edge causes a decrease of χ(G). Given an integer k, a k-
vertex-critical subgraph (k-VCS) of G is a vertex-critical subgraph G′ ⊆ G,
such that χ(G′) = k. Similarly, a k-edge-critical subgraph (k-ECS) of G is an
edge-critical subgraph G′ ⊆ G, such that χ(G′) = k. Note that each graph
G contains at least one k-VCS and one k-ECS for 1 ≤ k ≤ χ(G). Finally, a
k-VCS (resp. k-ECS) is minimum if G has no other such critical subgraph
containing less vertices (resp. edges).

While any k-ECS is also a k-VCS, the opposite is not necessarily true.
For example, consider the graph in figure 1. This graph of chromatic number
4 is vertex-critical, since removing any vertex decreases its chromatic number
to 3, but is not edge-critical since one can remove the edge (v1, v2) without
changing its chromatic number.

1.2 Applications of critical subgraphs

There are many reasons to search for critical subgraphs of a given graph
G. One of them is to obtain χ(G) [11]. A lower bound on χ(G) can be
obtained by finding a k-VCS or a k-ECS H of G for any 1 ≤ k ≤ χ(G) and
then computing χ(H) using an exact coloring algorithm. Furthermore, if an
upper bound k′ on χ(G) is known, for example from a heuristic algorithm,
one can find a k′-VCS or a k′-ECS G′ and show that χ(G′) = k′ using the
exact coloring algorithm. The reason for applying the exact coloring algo-
rithm to G′ instead of G is that, unless G is itself critical, critical subgraphs
have fewer edges and possibly fewer vertices. Thus, the exact coloring al-
gorithms, of exponential complexity, have better chances of solving these
reduced subgraphs than the whole graph.

This paper proposes algorithms for finding k-VCSs and k-ECSs, and is
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organized as follows. Section 2 contains the description of these algorithms.
Section 3 presents a heuristic strategy to find small critical subgraphs. Sec-
tion 4 discusses the implementation of heuristic coloring algorithms for crit-
ical subgraph detection. Section 5 introduces a technique to speed up the
detection. Section 6 contains an algorithm to compute a lower bound on
the size of a critical subgraph. Section 7 presents some computational ex-
periments and their results. Finally, section 8 contains some final remarks
on this paper.

2 Critical subgraph detection algorithms

The graph k-coloring problem, where one has to find a legal k-coloring or
show that none exists, is a classic instance of the constraint satisfaction prob-
lem (CSP) [15, 19], where the vertices are the variables, the set {1, . . . , k}
of possible colors is the domain of each variable, and each edge induces an
inequality constraint on two variables. Hence, a legal k-coloring exists if
one can assign a value to all variables such that all constraints are satisfied.
Given an infeasible CSP, an irreducible inconsistent set (IIS) of variables
(resp. constraints) is an infeasible set that becomes feasible when any vari-
able (resp. constraint) is removed [19, 7]. A k-VCS (resp. k-ECS) of a graph
G is thus an IIS of variables (resp. constraints) for the CSP that corresponds
to finding a (k − 1)-coloring of G. In [7], Galinier and Hertz present some
algorithms that find IISs of variables and constraints in infeasible CSPs. We
now present these algorithms and their most interesting properties, in the
context of graph coloring and critical subgraphs. For the proofs of these
properties, we refer to [7].

Definition Let G = (V,E) be a graph, c a k-coloring of G, and UE(c) ⊆ E
the set of edges having both vertices with the same color in c. Given a
function wE : E → R that associates a weight wE(e) to each edge e ∈ E,
the minimum weighted k-coloring problem is to determine a k-coloring c for
G that minimizes the following cost function:

fE(c) =
∑

e ∈ UE(c)

wE(e)

(i.e., fE(c) is the sum of the weights of the edges in UE(c).)

Definition Let G = (V,E) be a graph, c a partial legal k-coloring of this
graph, and UV (c) ⊆ V the subset of vertices that are not colored in c. Given
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a function wV : V → R that associates a weight wV (v) to each vertex v ∈ V ,
the minimum partial legal weighted k-coloring problem is to determine a
partial legal k-coloring c for G, that minimizes the following cost function:

fV (c) =
∑

v ∈ UV (c)

wV (v)

(i.e., where fV (c) is the sum of the weights of the vertices that are not
colored in c.)

To be more succinct, we will present only one version of each algorithm,
which can be used to find k-VCSs or k-ECSs. If one wants to find a k-VCS,
S corresponds to the set of vertices V , w is the weight function wV , f is
the cost function fV , U(c) is the set of non-colored vertices in a partial legal
(k−1)-coloring c of G, and Min is an exact or heuristic algorithm that finds
such a coloring that minimizes fV . On the other hand, if the goal is to find
a k-ECS, then S is the set of edges E, w is the weight function wE , f is the
cost function fE , U(c) is the set of edges having both vertices with the same
color in a (k− 1)-coloring c, and Min is an exact or heuristic algorithm that
finds such a coloring that minimizes fE . One can also consider Min as an
algorithm that finds a set of vertices or edges which intersects with every
vertex-critical or edge-critical subgraph, such that the total weight of this
set is minimum. The algorithms we are going to present do not return a
critical subgraph, but rather a subset H of vertices or edges which translates
into a subgraph by reducing G so that its set of vertices V or its set of edges
E is equal to H.

2.1 The removal algorithm

The removal algorithm is perhaps the simplest of all critical subgraphs de-
tection algorithms. Similar approaches have already been proposed, for
example, in [3, 4] for linear programming and in [11] for the graph coloring
problem. Given a graph G and an integer k, the removal algorithm finds k-
VCSs (resp. k-ECSs) by removing vertices (resp. edges) from G and setting
their weight to 0. If the chromatic number of the remaining graph becomes
smaller than k, then Min should find a coloring c with f(c) = 0. In such
a case, the vertex or edge that was removed last is re-inserted in G and
its weight is set equal to |S|. The algorithm repeats this process until Min
produces a coloring c with f(c) ≥ |S|, which occurs the vertices or edges of
weight |S| induce a graph of chromatic number k.
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Algorithm 1 Removal
Input: A graph G and an integer k;
Output: A set H of vertices or edges.

Initialization
for all s ∈ S do

w(s)← 1;
end for

Construction
repeat

Choose an element s ∈ S such that w(s) = 1;
w(s)← 0;
c← Min(G, k − 1, w);
if f(c) = 0 then

w(s)← |S|;
end if

until f(c) ≥ |S|

Extraction
H ← {s | w(s) = |S|};

Property 2.1 Given a graph G and an integer k, if Min is an exact algo-
rithm, then the removal algorithm produces, in a finite number of iterations,
a set H which forms a k-VCS or a k-ECS. Otherwise, if Min is a heuristic
algorithm, then H forms a subgraph that is either a k-VCS or k-ECS, or
has a chromatic number smaller than k.

To illustrate the removal algorithm, consider the graph shown in fig-
ure 2. This graph has a chromatic number of 3, and contains two 3-
VCSs, {v1, v2, v6} (minimum) and {v2, v3, v4, v5}, as well as three 3-ECSs,
{e1, e2, e4} (minimum), {e3, e4, e5, e6, e7} and {e1, e2, e3, e5, e6, e7}. Suppose
we want to find a 3-VCS. We first remove any vertex, for example v2. The
graph then becomes 2-colorable (i.e. f(c) = 0), so v2 gets re-inserted with
a weight of |S| = 6. Another vertex is then removed, say v1, and since
χ(G) remains equal to 3, this vertex is not re-inserted in the graph. Notice
that the 3-VCS that contained v1 has been destroyed in the process, and
the only one 3-VCS, containing the vertices v2, v3, v4, v5 and v6, remains.
Hence, these vertices all decrease χ(G) when removed, and will all get weight
|S| = 6. When so, f(c) = |S| and the 3-VCS is therefore detected.
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Figure 2: A graph of chromatic number 4

Observe that the order in which the vertices or edges are removed affect
which critical subgraph is obtained. Accordingly, if we had removed v3

instead of v1 during the second removal, the resulting 3-VCS would instead
contain v1, v2 and v6, and would be minimum.

2.2 The insertion algorithm

While the removal algorithm proceeds by removing vertices or edges from the
graph, the insertion algorithm builds a critical subgraph by adding them.
Every iteration i, Min returns a (k − 1)-coloring ci that minimizes f . This
coloring has a set U(ci) of uncolored vertices or conflicted edges. From this
set, one vertex or edge gets a weight of |S| and the others are removed by
setting their weight to 0. One vertex or edge is kept to ensure that at least
one k-VCS or k-ECS remains in G. Once again, this process is repeated until
the vertices or edges of weight |S| induce a graph with chromatic number k.

Property 2.2 Given a graph G and an integer k, if Min is an exact algo-
rithm, then the insertion algorithm produces, in a finite number of iterations,
a set H which forms a k-VCS or a k-ECS. Otherwise, if Min is a heuristic
algorithm, then H forms a subgraph that is either a k-VCS or k-ECS, or
has a chromatic number smaller than k.

Let us illustrate the insertion algorithm on the detection of a 3-ECS
in the graph of figure 2. The first 2-coloring c1 returned by Min gives
U(c1) = {e4}. Since e4 is the only conflicted edge, its weight is changed
to |S| = 7. The next 2-coloring should then satisfy this edge and have one
conflicted edge for each 3-ECS. The second 2-coloring c2 can therefore be
such that U(c2) = {e1, e3}. Suppose we choose to set the weight of e1 to
0 and e3 to |S| = 7, only one 3-ECS remains: {e3, e4, e5, e6, e7}. The three
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next 2-colorings c3, c4 and c5 will fix the weight of e5, e6 and e7 to |S| = 7.
Then Min produces a 2-coloring c6 with f(c6) = |S| = 7, and the 3-ECS is
therefore detected. Once more, the choice of which edge from each U(ci)
gets a weight of |S| = 7 determines which critical subgraph is found by the
insertion algorithm. If, during the second iteration, we had decided to set
the weight of e3 to 0 instead of e1, one can verify that the 3-ECS found
would have been the minimum one formed by {e1, e2, e4}.

Algorithm 2 Insertion
Input: A graph G and an integer k;
Output: A set H of vertices or edges.

Initialization
for all s ∈ S do

w(s)← 1;
end for

Construction
repeat

c← Min(G, k − 1, w);
if f(c) = 0 then

STOP: an error occurred;
else if f(c) < |S| then

Choose an element s ∈ U(c) such that w(s) = 1;
w(s)← |S|;
for all s′ ∈ U(c), s′ 6= s do

w(s′)← 0;
end for

end if
until f(c) ≥ |S|

Extraction
H ← {s | w(s) = |S|};

Notice that the insertion algorithm cannot find all the critical subgraphs
of a given graph. Consider, for example, the graph of chromatic number
3, shown in figure 3. Suppose we wish to find the minimum 3-ECS cor-
responding to the three edges in the center of the graph (bold lines in the
figure). The first coloring c1 yields a U(c1) that contains these three edges.
However, since we have to set the weight of one of these edges to |S| and the
rest to 0, this 3-ECS will thus be destroyed, and the output of the insertion
algorithm will therefore be one of the pentagons.
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Figure 3: A graph containing one minimum edge-3-critical subgraph

2.3 The hitting set algorithm

The hitting set algorithm differs from the two previous algorithms in that
it produces minimum critical subgraphs. This algorithm relies on the fact
that, given a graph G and a (k − 1)-coloring c produced by Min, the set
U(c) necessarily intersects with all k-VCSs or k-ECSs of G. A k-VCS or
a k-ECS is thus a hitting set (see definition below) of the collection U =
{U(c1), . . . , U(c|U|)}.

Definition Let J = {J1, . . . , J|J |} be a collection of sets Ji ⊆ S, 1 ≤ i ≤
|J |, and H ⊆ S be another set. H is a hitting set of J if it intersects each
of its subsets J1, . . . , J|J |. The minimum hitting set problem for a collection
J consists in finding a hitting set H∗ of J such that |H∗| is minimum.

At each iteration i, the hitting set algorithm obtains a coloring ci and
adds the set U(ci) to the initially empty collection U . The algorithm then
calls an exact procedure, called MinHS, which returns a minimum hitting
set H for U . The weight of all vertices or edges in H is then set equal to
|S|, while the other vertices or edges get a weight of 1 . This procedure is
repeated until MinHS produces a coloring c with f(c) ≥ |S|.

Property 2.3 Given a graph G and an integer k, if Min is an exact algo-
rithm, then the hitting set algorithm produces, in a finite number of itera-
tions, a set H which forms a minimum k-VCS or k-ECS. Otherwise, if Min
is a heuristic algorithm, then H forms a subgraph that is either a minimum
k-VCS or k-ECS, or has a chromatic number smaller than k.

If MinHS is replaced by a heuristic algorithm, then the property still
holds, except that there is no guarantee that a detected k-VCS or k-ECS is
minimum.

Lets illustrate the hitting set algorithm on the graph of figure 2. Suppose
that our goal is to find a 3-VCS. Since U is initially empty, all edges first get



2 CRITICAL SUBGRAPH DETECTION ALGORITHMS 9

a weight of 1. Accordingly, the first partial 2-coloring c1 is such that U(c1)
contains either v2 or v6, say v2. We then set U =

{
{v2}

}
, such that the next

hitting set returned by MinHS is H = {v2}. Then, c2 should give U(c2) =
{v6} and therefore U =

{
{v2}, {v6}

}
. In turn, the following hitting set

should be H = {v2, v6}, and U(c3) should contain v1 and another vertex from
the set {v3, v4, v5}, for example, v3. We then have U =

{
{v2}, {v6}, {v1, v3}

}
,

and the corresponding hitting set can be either {v1, v2, v6} or {v2, v3, v6}.
In the first case, the minimum 3-VCS is found. However, if the latter set
is returned by MinHS, then U(c4) necessarily contains v1 and either v4 or
v5, say v4. We finally have U =

{
{v2}, {v6}, {v1, v3}, {v1, v4}

}
, and the next

hitting set will be H = {v1, v2, v6}, the minimum 3-VCS.

Algorithm 3 Hitting set
Input: A graph G and an integer k;
Output: A set H of vertices or edges.

Initialization
U ← ∅;

Construction
repeat

H ← MinHS(U);
for all s ∈ S do

if s ∈ H then
w(s)← |S|;

else
w(s)← 1;

end if
end for
c← Min(G, k − 1, w);
if f(c) < |S| then
U ← U ∪ {U(c)};

end if
until f(c) ≥ |S|

While the hitting set finds a minimum critical subgraph, it does so in an
exponential number of steps. Therefore, this algorithm may not be suitable
for large instances. However, one can stop the algorithm at any time and
use |H| as a lower bound on the size of critical subgraphs.
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2.4 The pre-filtering algorithm

When dealing with large instances, it can be useful to quickly filter out as
many vertices and edges as possible, leaving less for the critical subgraph de-
tection algorithm. The pre-filtering algorithm is a variation of the insertion
algorithm used as pre-processing before one of the aforementioned detection
algorithms is applied. At each iteration i, Min produces a (k − 1)-coloring
ci that minimizes f . This coloring has a set U(ci) of uncolored vertices or
conflicted edges. A weight of |S| is assigned to each element in U(ci) . The
algorithm stops when a coloring c is produced with f(c) ≥ |S|. When this
occurs, all vertices or edges with weight 1 are filtered out. Since at least one
vertex (resp. edge) of each k-VCS (resp. k-ECS) gets a weight of |S| at each
iteration, smaller critical subgraphs are more likely to remain on the filtered
graph rather than bigger ones. Thus, the pre-filtering algorithm acts as an
heuristic that isolates smaller critical subgraphs.

Algorithm 4 Pre-filtering
Input: A graph G and an integer k;
Output: A set H of vertices or edges.

Initialization
for all s ∈ S do

w(s)← 1;
end for

Construction
repeat

c← Min(G, k − 1, w);
if f(c) < |S| then

for all s ∈ U(c) such that w(s) = 1 do
w(s)← |S|;

end for
end if

until f(c) ≥ |S|

Extraction
H ← {s | w(s) = |S|};

Consider once more the detection of a 3-ECS for the graph in figure 2. If
we use the pre-filtering algorithm, the first 2-coloring returned by Min gives
U(c1) = {e4}. As a result, e4 gets a weight of |S| = 7. Then U(c2) contains
an edge from the set {e1, e2} and another from {e3, e5, e6, e7}, for example,
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e1 and e3. Both edges get a weight of |S| = 7, such that the next 2-coloring
c3 gives a set U(c3) containing e2 and another edge from {e5, e6, e7}, say e5.
Once both edges get a weight of |S| = 7, any 2-coloring c has total weight
f(c) ≥ |S|. The pre-filtering algorithm therefore stops and returns the set
H = {e1, e2, e3, e4, e5}. Notice that H contains only one 3-ECS, {e1, e2, e4},
which is of minimum cardinality.

As another example, consider the graph of figure 3 in which the insertion
algorithm fails to find the unique minimum 3-ECS (made of the edges of the
middle triangle). As for the insertion algorithm, the first 2-coloring c1 yields
a set U(c1) that contains all three edges of the minimum 3-ECS. The weight
of these three edges is set equal to |S| and the pre-filtering algorithm then
stops with the output H made of these three edges. Hence, in contrast to
the insertion algorithm, the pre-filtering algorithm succeeds in finding the
minimum 3-ECS.

3 Neighborhood weight heuristic

Recall that finding a critical subgraph H of a graph G can be used to
compute χ(G), and that exact coloring algorithms of exponential complexity
are more likely to determine χ(H) rather than χ(G). Thus, when looking
for a critical subgraph, it is essential to find one having as few vertices
and edges as possible. We saw in the previous section that the hitting set
algorithm finds minimum critical subgraphs. Since this algorithm typically
requires an exponential number of iterations, one can instead use the pre-
filtering algorithm to isolate small critical subgraphs. This section proposes
yet another heuristic to find small critical subgraphs.

When describing the removal and insertion algorithms, we saw that the
choice of which vertex or edge gets removed from G or gets their weight set
to |S| at any iteration determines which critical subgraph is obtained. The
heuristic we now present uses the information contained in the weights of
the vertices and edges of G to find smaller critical subgraphs of G.

Definition Consider a graph G = (V,E) and a weight function wV that
associates a weight wV (v) to each vertex v ∈ V , and let NV (v) be the set of
vertices adjacent to v. The neighborhood weight WV (v) of v is defined as

WV (v) =
∑

v′ ∈ NV (v)

wV (v′)
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Figure 4: Vertex (left) and edge (right) neighborhood weights

Definition Consider a graph G = (V,E) and a weight function wE that
associates a weight wE(e) to each edge e ∈ E, and let NE(e) be the set of
edges having a common endpoint with e. The neighborhood weight WE(e)
of e is defined as

WE(e) =
∑

e′ ∈ NE(e)

wE(e′)

Figure 4 shows examples of neighborhood weights for the vertices (left
graph) and edges (right graph) of a graph. The values on the left graph
are obtained using the weights of vertices resulting from two iterations of a
3-VCS detection using the insertion algorithm, where vertices shown in bold
have a weight of |S| = 6 and others 1. Suppose the third 2-coloration c3

produces a set U(c3) containing the topmost vertex of neighborhood weight
12 and another one with neighborhood weight 7. The neighborhood weight
heuristic favors keeping the vertex v having the greatest value for WV (v),
such that the topmost vertex would get its weight changed to |S| = 6. Thus,
the minimum 3-VCS corresponding to the three topmost vertices is found.

The graph on the right of figure 4 shows the neighborhood weights of the
edges after having initialized their weight to 1. Suppose we are detecting 3-
ECSs using the removal algorithm, the neighborhood weight heuristic favors
the removal of an edge e having the smallest value for WE(e). Hence, the first
edge to be removed would be one of the bottom edges with WE(e) = 2. This
removal destroys two of the 3-ECSs, such that only the one with minimum
cardinality remains.

4 Heuristic coloring algorithms

The algorithms presented in section 2 guarantee that k-VCSs or k-ECSs are
found when the input graph has chromatic number χ(G) ≥ k and Min is an
exact algorithm. However, the minimum weighted k-coloring problem and
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the minimum partial legal weighted k-coloring problem are both NP-hard,
and using exact algorithms for larger instances may therefore prove to be
impractical. This section discusses the implementation of heuristic coloring
algorithms which allow, without any guarantee, to find critical subgraphs of
much larger graphs.

Local search has shown to be an efficient strategy when implementing
heuristic algorithms for hard optimization problems like the graph k-coloring
problem. In particular, tabu search algorithms [9, 10] have produced excel-
lent results on problems related to the minimum weighted k-coloring and
minimum partial legal weighted k-coloring problems. Accordingly, we now
give some details on how to implement such algorithms for critical subgraph
detection.

Recall that for the detection of k-ECSs, the goal of procedure Min is to
find a (k− 1)-coloring c such that the sum fE(c) of the weights of the edges
having both vertices with the same color is minimum. The solution space of
this problem is defined as the set of all such colorings, and the cost function
is fE . Given a coloring c, a neighbor solution is obtained by modifying the
color of exactly one vertex of an edge in UE(c). To avoid cycling and escape
local minima, the tabu strategy forbids assigning to a vertex a color this
vertex had in the last τ iterations of the tabu search, unless this assignment
improves the best cost found so far. The parameter τ is known as the tabu
tenure, and its optimal value varies from one instance to another.

For the detection of k-VCS, procedure Min has to determine a partial le-
gal (k−1)-coloring such that the sum fV (c) of the weights of the non-colored
vertices is minimum. The solution space is the set of all such colorings, and
the cost function is fV . Following the strategy proposed by Morgenstern
[17], a neighbor solution of a coloring c is obtained by assigning a color i to
a non-colored vertex v, and by removing the color on each vertex v′ adjacent
to v with c(v′) = i. The tabu strategy forbids to color an non-colored vertex
with a color that this vertex had in the last τ iterations, unless this move
improves the best cost found so far.

5 Critical subgraphs detection speed-up

This section presents a technique that can be used to speed-up the detection
of critical subgraphs when using the removal, insertion and pre-filtering
algorithms.

Consider a graph G, an integer k, a weight function w, and let c be a
(k− 1)-coloring produced by Min. Recall that U(c) can be understood as a
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minimum hitting set of the k-VCSs or k-ECSs in G. Accordingly, if c is a
coloring with f(c) = 1, we know that U(c) contains a single vertex or edge
that necessarily belongs to all k-VCSs or k-ECSs of G. We can therefore
right away set the weight of this vertex or edge to |S|. This technique is
very efficient when combined with a local search coloring algorithm which
can evaluate millions of solutions in a single run. Indeed, each time the
local search encounters a solution c with f(c) = 1, one can insert the unique
element of U(c) in a initially empty set A. At the end of the local search, one
can assgin the weight |S| to each element in A. If a graph contains a unique
k-VCS or k-ECS, then this technique can detect this critical subgraph in a
single run of the local search, which takes no more than a few seconds.

6 A minimum critical subgraphs size lower bound

We have noticed in section 2.3 that one can stop the hitting set algorithm
at any time and use the size of the last hitting set H as a lower bound on
the size of a critical subgraph. This is only true in the case where MinHS
finds optimal solutions to the NP-hard minimum hitting set problem. We
now present another algorithm for computing a lower bound on the size of
critical subgraphs

Given a graph G, an integer k and an integer imax, the lower bound
algorithm computes a lower bound on the size of a k-VCS or k-ECS, using
no more than imax iterations. This algorithm uses a function µ : S → N+

that associates to each vertex or edge s ∈ S the number µ(s) of iterations i
where this vertex or edge was in the set U(ci). In other words, µ(s) is initially
equal to 0 for all s ∈ S, and at each iteration i, Min returns a coloring ci

and µ(s) is incremented by one unit for each s ∈ U(ci). A temporary lower
bound b′ is then obtained from a function g defined below.

Definition Let s1 ≥ . . . ≥ s|S| be an ordering of the elements in S such that
µ(s1) ≥ . . . ≥ µ(s|S|). Given an integer i, g(µ, i) is defined as the smallest
integer l such that

∑l
j=1 µ(sj) ≥ i

Finally, since the lower bound b′ given by g can decrease from one iter-
ation to another, the best lower bound b is set equal to the greatest value
between the previous best value b and the new bound b′.

To illustrate the lower bound algorithm, consider once again the graph
in figure 3, which contains one minimum 3-ECS that the insertion algorithm
fails to detect. Figure 5 shows the details of the first seven iterations of the
algorithm. As before, the first 2-coloring c1 has a set U(c1) containing the
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Algorithm 5 lower bound
Input: A graph G, an integer k and an integer imax;
Output: A lower bound b.

Initialization
for all s ∈ S do

µ(s)← 0;
end for
i← 0;

Computation
while i < imax do

for all s ∈ S do
w(s)← |S|µ(s);

end for
c← Min(G, k − 1, w);
for all s ∈ U(c) do

µ(s)← µ(s) + 1;
end for
b = max

(
b, g(µ, i)

)
;

end while

µ(e)=1 µ(e)=2 µ(e)=4µ(e)=3

b=1
i=1

b=1
i=2

b=2
i=3

b=2
i=4

b=2
i=5

b=2
i=6

b=3
i=7

Figure 5: Illustration of the minimum size lower bound algorithm
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Figure 6: A graph producing a sub-optimal minimum size lower bound

three edges forming a triangle in the center of the graph. For those edges e,
µ(e) is increased to 1, w(e) is set equal to |S|, and since only one of them is
required to total i = 1, the lower bound b is set to 1. The next 2-coloring c2 is
such that U(c2) contains one of the three middle edges, and four other edges
to cover all the remaining 3-ECSs, as shown in the second graph of figure 5.
Thus, the leftmost edge e of the triangle gets µ(e) = 2 and since this single
value is sufficient to total i = 2, b remains equal to 1. The same happens for
c3, except that the rightmost edge is in U(c3) and that two edges are now
required to total i = 3, and thus b = 2. Next, c4 has all three edges of the
triangle with µ(e) = 2, and given that only two of those are required to total
i = 4, b remains equal to 2. The fifth and sixth 2-colorings then cause two
of the edges of the triangle to have µ(e) = 3 such that b still remains equal
to 2. However, for the seventh 2-coloring, three edges are necessary to total
i = 7, and the lower bound b therefore becomes 3. Because b then equals
the size of the smallest 3-ECS, all subsequent iterations of this algorithm
would be useless. Hence, imax = 7 is an optimal number of iterations for
this particular graph.

There are cases, however, where this algorithm fails to obtain a lower
bound equal to the size of a minimum critical subgraph. For example,
consider the graph in figure 6 which has a chromatic number of 4. Given
the task of finding a lower bound to the minimum 3-VCS, one can verify
that the algorithm returns a lower bound of 2, while any triangle in this
graph is a 3-VCS of size 3.

7 Computational experiments

In this section we present some computational experiments related to the
algorithms described in the previous sections. The purpose of these experi-
ments is twofold: to analyze the pros and cons of each algorithm in finding
critical subgraphs, and to evaluate the general benefit of finding critical
subgraphs of a graph G for the computation of χ(G).

All experiments were carried out on computers having a 1.6Ghz Athlon
processor and 512Mb of RAM.
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7.1 Implementation insights

When using heuristic implementations for procedure Min, the removal and
insertion algorithms may produce errors. More precisely, it can happen
that, based on the output of Min, vertices or edges are removed from G
(i.e. their weight is set equal to 0) so that a subgraph H is obtained with
χ(H) < k ≤ χ(G). In the case of the insertion algorithm, such errors can
be detected if the output c of Min has value f(c) = 0. One can correct
these errors by restoring the weight of previously removed vertices or edges
to 1, until f(c) > 0. There are many ways to choose which removed vertex
or edge to re-insert first. One possibility, based on the fact that the error
was probably committed at a recent iteration, is to re-insert them in the
reverse order of their removal. Another possibility is to use the neighbor-
hood weight heuristics (see Section 3) to select the vertex or edge that is
the closest to those of weight |S|, thus trying to generate denser critical
subgraphs. A similar strategy can be implemented to detect errors in the
removal algorithm.

When errors are detected and repaired, it may happen that the subgraph
H produced by the removal or insertion algorithm is not critical (especially if
the repairing strategy does not re-insert vertices or edges in the reverse order
of their removal). Hence, if desired, one can re-apply the critical subgraph
detection algorithm on H, and repeat this process until no additionnal vertex
or edge can be removed.

7.2 Experimental data

The experiments were carried out on two sets of instances. The first set
contains (n, p) random graphs. Given a positive integer n and a real number
p ∈ [0, 1], the corresponding (n, p) random graph is such that |V | = n and
all n(n− 1)/2 ordered pairs of vertices have a probability p of being linked
by an edge in E. Parameter p is called the edge density of the graph. As
a convention, we give the name “R〈n〉.〈p〉” to a particular (n, p) random
graphs generated in our experiments. The second set of instances used
for the experiments are the DIMACS benchmark graphs, which come from
various sources. For a detailed description of these instances, the reader can
refer to [13] or http://mat.gsia.cmu.edu/COLOR04.

7.3 VCS versus ECS detection

The first experiment aims at comparing VCS and ECS detection on a (50, 0.5)
random graph R50.5 that has 590 edges and a chromatic number of 9.
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Table 1 shows the results of critical subgraph detection on R50.5 using
three algorithms: the removal algorithm with neighborhood weight heuristic
(Rem+h), the insertion algorithm also with neighborhood weight heuristic
(Ins+h), and the pre-filtering algorithm followed by Ins+h (Filter+Ins). For
each of these detection algorithms, 10 k-VCSs and 10 k-ECSs were found for
k = 9, using different random seeds for Min. The average number of vertices
and edges of these critical subgraphs is shown under the columns labeled
|V ′| and |E′|, and the resulting average edge densities under the column
labeled p′. The chromatic number of these subgraphs was then obtained
using an exact coloring algorithm based on the one described in [18], after
an average number of backtracks shown in the column labeled btk′.

From these results, we can see that the detection algorithms perform
differently on VCSs than on ECSs. For instance, Filter+Ins produces, on
average, the smallest VCSs of the three algorithms, but yields the biggest
ECSs. On the other hand, Rem+h produces, on average, the biggest VCSs
of the three algorithms, while smallest ECSs are obtained by the same al-
gorithm. Differences also emerge between the VCSs and ECSs found by the
detection algorithms. While ECSs have fewer edges than VCSs, VCSs tend
to have less vertices. Consequently, the edge density of ECSs is much less
than that of VCSs (0.44 on average for ECSs compared to 0.54 for VCSs).
Notice also that the edge density of VCSs is greater than the expected 0.5.
This increase is probably due to the use of the neighborhood weight heuris-
tic and pre-filtering algorithm that help finding denser subgraphs. A less
predictable result is the huge difference in the number of backtracks required
for VCSs and ECSs (367 on average for VCSs compared to 1670 for ECSs).
This gap can mostly be explained by the difference in edge density of the
subgraphs. Firstly, VCSs have fewer vertices resulting in a smaller search
space for the exact coloring algorithm. Secondly, the greater number of
edges in VCSs results in more constraints to eliminate illegal colorings from
the search space, thus reducing the number of backtracks.

When the goal is to find a lower bound on χ(G), we have observed that
it is more efficient to search for VCSs than ECSs. Apart from producing
critical subgraphs that are easier for the exact coloring algorithm to solve,
VCS detection requires a lesser number of iterations than ECS detection. In
the case of the removal algorithm, the number of iterations required to find
a critical subgraph, which estimates the calculation time complexity, is, in
the worst case, equal to |V | for VCS detection, and |E| for ECS detection.
For the insertion algorithm, the number of iterations is, in the worst case,
equal to the size of H. For example, VCS detection on R50.5 using Ins+h
took, on average, 37 iterations while 345 iterations were required for ECSs
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detection using the same algorithm. For these reasons, the next experiments
focus on VCS detection.

VCS ECS

Method |V ′| |E′| p′ btk′ |V ′| |E′| p′ btk′

Rem+h 38.2 384.1 0.54 380.4 36.8 327.5 0.50 1089.4
Ins+h 37.1 355.7 0.53 348.5 41.2 344.8 0.42 1295.4
Filter+Ins 36.3 344.7 0.54 371.8 41.9 344.4 0.40 2625.4

Table 1: Vertex-critical and edge-critical subgraph detection on graph R50.5

7.4 VCS detection by hitting set algorithm

The next experiment evaluates the hitting set algorithm. We have generated
a (n, 0.5) random graph for each n ∈ {15, 20, 25, 30, 35, 40, 45, 50}. For each
such graph G, we have applied the hitting set algorithm 10 times for the
detection of k-VCSs with k = χ(G), each time using different random seeds
for Min and MinHS. The values χ(G) were obtained by means of the exact
coloring algorithm. Table 2 shows the number of vertices |V | and edges |E|
of these random graphs, and their chromatic number χ(G). The column
labeled |V ′| contains the average number of vertices of the detected k-VCSs,
and the column labeled iter indicates the average number of iterations that
this algorithm took to find the corresponding subgraphs. A tabu search
implementation for MinHS was used. Thus, unless the k-VCS is a clique,
we have no guarantee that it is minimum.

Graph VCS

|V | |E| χ(G) |V ′| iter

15 46 4 4 10.9
20 90 5 5 16.6
25 137 6 9 40.4
30 211 7 7 22.2
35 277 7 7 41.7
40 369 8 25 641.5
45 473 9 42 164.8
50 590 9 32 2554.4

Table 2: Hitting set algorithm on 0.5 density random graphs

The results presented in table 2 show that the hitting set algorithm
found, for all instances, 10 subgraphs having the same |V ′|, which indicates
that these critical subgraphs are most probably minimum. Most impor-
tantly, these results reveal that the number of iterations of the hitting set
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algorithm is, as predicted, exponential on |V |. Notice, however, that this
relation is not strictly increasing, as the number of iterations shortly drops
when χ(G) increases. This phenomenon is detailed in an experiment pre-
sented later in this paper (see Section 7.6).

7.5 Detection heuristics and lower bounds comparison

The next experiment has two goals. The first goal is to analyze the impact
of using the neighborhood weight heuristic and the pre-filtering algorithm
on VCS detection. The second goal is to compare the lower bounds on
the size of a VCS obtained by the hitting set algorithm and by the lower
bound algorithm presented in section 6. Table 3 contains the results of this
experiment. The first four columns of this table contain the name, number
of vertices and edges, as well as the chromatic number of the instances used
in the experiment. The next five columns contain the minimum, median
and maximum number of vertices of 10 k-VCSs for k = χ(G), found by
five detection algorithms, each time using a different random seed for Min:
the removal algorithm without any heuristic (Rem), the removal algorithm
with the neighborhood weight heuristic (Rem+h), the insertion algorithm
without any heuristic (Ins), the insertion algorithm with the neighborhood
weight heuristic (Ins+h), and the pre-filtering algorithm followed by Ins+h
(Filter+Ins). Finally, the last two columns show the minimum, median
and maximum number of vertices of the k-VCSs detected for k = χ(G) by
the hitting set algorithm (HS ) and the minimum, median and maximun
values produced by the lower bound algorithm (LB). For HS, the values
preceded by “≥” represent lower bounds obtained when stopping the hitting
set algorithm after 3000 iterations.

The results in table 3 clearly indicate that the removal and insertion
algorithms perform better when combined with the neighborhood weight
heuristic. In all but one case (Rem on queen6 6 ), the smallest VCSs found
using the heuristic have a lesser or equal number of vertices than the ones
found without any heuristic. More importantly, the median number of ver-
tices of VCSs found with the heuristic is strictly smaller for all instances
except one (again Rem on queen6 6 ), while the biggest VCSs found us-
ing the neighborhood weight heuristic have fewer vertices for all instances.
Thus, the neighborhood weight heuristic also reduces the variance in the size
of critical subgraphs found. A good example is DSJC125.1 which contains
minimum VCSs of only 10 vertices. The simple removal algorithm found
such minimum subgraphs in 2 out of 10 cases, whereas the same algorithm
using the neighborhood weight heuristic found one in 6 cases. Furthermore,
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the biggest VCS found using Rem+h has only 13 vertices, compared to 50 for
Rem. Algorithm Filter+Ins seems to perform even better as a heuristic to
find smaller VCSs. For the R50.5, R60.5, queen6 6 and queen8 8 instances,
Filter+Ins finds VCSs containing fewer vertices than those found by any
other detection algorithm. Moreover, for the R50.5 and queen6 6 instances,
these subgraphs were shown minimum by the hitting set algorithm. Consid-
ering that Filter+Ins is usually faster than the other detection algorithms,
it is probably the best algorithm to find critical subgraphs.

As for finding lower bounds on the size of minimum VCSs, the last two
columns of table 3 show that HS performs better than LB. For all instances
tested with HS, the lower bounds found had more vertices than those found
with LB. For example, HS found a lower bound of 36 vertices for R60.5,
while LB produced a best lower bound of 11 vertices. Moreover, HS found
actual minimum VCSs for R50.5 and queen6 6. In brief, when the size of
the instance allows its use, HS yields better lower bounds than LB.

7.6 VCS detection on random graphs

The next experiment focuses on finding VCSs in random graphs for the
computation of their chromatic number. Because they have no particular
structure, (n, p) random graphs are probably the least suitable instances for
finding critical subgraphs. Depending on the edge density p, such graphs
can contain critical subgraphs that have almost as many vertices or edges
as the original graph.

Tables 4 and 5 show the results of VCS detection for random graphs of
edge density 0.1 and 0.5. We have generated four different random graphs
for each pair (n, 0.1) with n ∈ {100, 110, . . . , 220}, and for each pair (n, 0.5)
with n ∈ {80, 90, 95, 100}. The first four columns contain the number of
vertices and edges of the instances, an upper bound k for χ(G), and the
number of backtracks required by the exact coloring algorithm to determine
χ(G). Backtrack values given without parentheses indicate that we have
been able to compute χ(G) and, in such a case, we have fixed k = χ(G).
However, backtrack values enclosed in parentheses mean that we have not
been able to compute χ(G) and we indicate the CPU-time (in seconds)
it took for the exact coloring algorithm to exceed the maximum allowed
number of backtracks (250000000). In such a case, k can be strictly larger
than χ(G).

We have applied each algorithm 10 times on each instance, every time
using a different random seed for Min. The other columns of Tables 4 and
5 contain the number of vertices and edges of the smallest k-VCS obtained



7 COMPUTATIONAL EXPERIMENTS 22

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

Original number of vertices

V
er

te
x 

re
du

ct
io

n

 k = 5

 k = 6

 k = 7

Figure 7: Vertex reduction of (n, 0.1) random graphs versus n
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Figure 9: Back reduction of (n, 0.1) random graphs versus n

by Rem+h, Ins+h and Filter+Ins for each instance, as well as the number
of backtracks required to determine the chromatic number of these k-VCSs.
Once more, backtrack values enclosed in parentheses indicates that the chro-
matic number of the corresponding subgraphs could not be determined by
the exact coloring algorithm, and can be strictly smaller than k.

Figures 7 and 8 were produced using the VCSs obtained by Filter+Ins3.
Each curve contains instances for a particular value of k, and are drawn
such that abscissa values are the number of vertices |V | of these instances,
and ordinate values are the minimum, average and maximum reductions of
vertices for the corresponding critical subgraphs. Given a critical subgraph
of |V ′| vertices, the vertex reduction is calculated as follows:

|V | − |V ′|
|V |

These figures first show that the vertex reduction decreases as p increases.
Thus, the maximum vertex reduction reached for instances of 100 vertices
is 62% when p = 0.1, whereas the maximum reduction for p = 0.5 is only
18%. This result comes as no surprise, since denser instances tend to have
larger critical subgraphs. Furthermore, these figures reveal two opposite
trends when considered separately. On the one hand, the vertex reduction
decreases as k increases. Consider, for example, the reduction values for

3The VCSs found using Rem+h and Ins+h produce similar curves.
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the curves in figure 7. For k = 5, the maximum vertex reduction is 73%,
while this value drops to 57% for k = 6, and 39% for k = 7. The same
goes for the curves in figure 8, where the maximum vertex reduction is 21%
for k = 13, 18% for k = 14, and 3% for k = 15. On the other hand, the
vertex reduction increases with n, for a particular value of k. Consider once
more figure 7. For k = 5, the maximum vertex reduction increases from
62%, when n = 100, to a higher 73%, for n = 130. Likewise, for k = 6
the reduction rises from 24%, for n = 130 to 57% for n = 170. Finally, the
same happens for k = 7, where the reduction increases from 7% to 38% as
n varies from 180 to 220.

Figure 9 shows the maximum backtrack reduction for the k-VCSs ob-
tained with a particular value of k. Consider the backtrack reduction curve
for k = 5. For n = 100, the maximum backtrack reduction is −33% (i.e.
the number of backtracks actually increases). However, the maximum back-
track reduction rises to an excellent 77% for n = 110, and almost 100% for
n = 120 and n = 130. For k = 6, the maximum backtrack reduction starts
off at a positive 30% for n = 130, but then drops to −8% for n = 140 and
a low −40% for n = 150. Fortunately, the maximum reduction increases
again to a positive 24% for n = 160 and reaches close to 100% for n = 170
and n = 180. These results suggest that searching for critical subgraphs
is especially useful for instances having as many vertices as possible for a
particular χ(G).

In most combinatorial problems, there is a very sharp transition between
instances that can be solved optimally and those that cannot. In the case
of random graphs of edge density 0.1, the exact coloring algorithm used in
this experiment solved all instances of 160 vertices with less than 200000
backtracks, while two out of four instances of 170 vertices were not solved
after 250000000 backtracks, and none of the instances of 180 vertices were
solved within the same limit. However, these instances are close to the
maximum number of vertices for k = 6, and are thus excellent candidates
for the critical subgraph detection. In fact, the two instances of 170 vertices
that were not solved within limits produced critical subgraphs that were
easily solved in 167544 and 7367 backtracks, and the one instance of 180
vertices for k = 6 gave a critical subgraph that was solved in only 10347
backtracks.

As a final observation, the results of this experiment reveal a surprising
phenomenon. As the number of vertices of a given instance is reduced,
one can expect the exact coloring algorithm, which has a computational
complexity exponential in the number of vertices, to solve that instance in
a lesser or equal number of backtracks. However, figure 9 shows that this is
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not always the case. For example, for instances of 150 vertices, all the critical
subgraphs found increased the number of backtracks instead of reducing it.
A more striking example is a critical subgraph found by Ins+h that reduced
the number of vertices from 160 to 103. While the original instance took
199720 backtracks to solve, this critical subgraph was solved after as much
as 7955344 backtracks (3883% increase). This phenomenon, was previously
observed by Herrmann and Hertz in [11].

7.7 VCS detection on benchmarks

The last experiment, which results are presented in table 6, deals with DI-
MACS benchmark graphs. The purpose of this experiment is to find VCSs in
these instances in order to compute a lower bound on their chromatic num-
ber. The first four columns in table 6 contain the names of the instances,
their number of vertices and edges, as well as the number of backtracks
needed by the exact coloring algorithm to determine χ(G). Backtrack val-
ues enclosed in parentheses represent the number of backtracks made by the
exact coloring algorithm after reaching a 4 hour CPU-time limit. In such
a case, no value was obtained for χ(G). The next column contains a lower
bound k on χ(G). Values of k preceded by an asterisk “∗” indicate that
χ(G) is known, and that k = χ(G). The following three columns contain
the number of vertices and edges of the smallest k-VCSs, found within five
attempts using a different random seed for Min, and the number of back-
tracks required by the exact coloring algorithm to determine the chromatic
number of these subgraphs. Once again, values enclosed in parentheses
indicate that this chromatic number was not determined within the same
CPU-time limit, and might be different from k. Finally, the last column
contains lower bounds on the size of k-VCSs obtained by means of the lower
bound algorithm.

To facilitate the presentation of the results in table 6, we will divide the
instances in three categories. The first category is composed of instances
that are probably vertex-critical for χ(G). Graphs having myciel, mug or
Insertions in their name fall into this category. Results in table 6 show
that for the fourteen instances where k = χ(G) (i.e., there is an asterisk in
the fifth column), we have got a proof that G is a vertex critical since V
is the output of the detection algorithm. In the six other cases were k is
possibly strictly smaller than χ(G), we have a proof that either k < χ(G) or
G is vertex critical. Furthermore, because we used the speed-up technique in
combination with the detection algorithm, these graphs were shown possibly
critical after only a small number of iterations, even for those with a great
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number of vertices. For example, 3-Insertions 5 which has 1406 vertices,
was shown possibly vertex-critical by Ins+h using the speed-up technique
in only 22 iterations4. The speed-up technique is thus highly useful for
showing that a given graph is critical. As regards lower bounds on the size
of VCSs, we found in most cases values close or equal to |V |. For example,
we obtained a lower bound equal to |V | for all but one myciel graphs.

The second category contains the instances which have cliques as mini-
mum k-VCSs, for k = χ(G). The graphs anna, david, homer, huck, jean, as
well as those having fpsol2, inithx, mulsol, zeroin, le450, school1, games120
or miles in their name are such instances. These instances are interest-
ing because they have the smallest possible critical subgraphs (i.e., k-VCSs
with k vertices) that are therefore easier to detect. Moreover, the chromatic
number of a clique is equal to its number of vertices, such that the exact
coloring algorithm is not required at all. From table 6, we see that cliques
were found as VCSs for all 39 instances in this category, among which 17
had not been solved by the exact coloring algorithm. Once more, the lower
bound procedure gives decent results for instances in this second category.

Finally, the last category is composed of all the instances falling in none
of the two first categories. Among those are the DSJC instances, which are
standard (n, p) random graphs used by Aragon et al. in [1]. As mentioned
in the previous experiments, random graphs are generally poor candidates
for the detection algorithms because, as opposed to instances in the second
category, they have critical subgraphs of large size. Except for DSJC125.1,
which has a 5-VCS of only 10 vertices, we therefore focused on the search
of interesting lower bounds k ≤ χ(G) for these instances. We thus showed
for DSJC125.5 that χ(G) ≥ 14, while, to our knowledge, the best known
bound for this instance was 13. Additionally, we were able to show that
χ ≥ 6 for DSJC250.1. However, the lower bound k one can obtain for a
given instance is limited by the size of the k-VCSs that can be found for this
instance. Thus, even though we were able to find a k-VCS for DSJC250.9
for k = 50, this subgraph was too big (133 vertices and 8052 edges) for the
exact coloring algorithm to determine its chromatic number.

The queenN N graphs are also comprised in this last category of in-
stances. These graphs are particular because the minimum k-VCSs for
k = χ(G) are either cliques5 or subgraphs containing most of the ver-
tices of the original instance. Accordingly, we were able to find k-VCSs

4As many as 1152 vertices of the critical subgraph were found after the first iteration,
and 1372 after the second.

5This is always the case for odd values of N that are not multiple of 3.
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for k = χ(G) when these subgraphs were cliques (i.e., queen5 5, queen7 7,
queen8 12, queen11 11, queen12 12, queen13 13 and queen14 14 ). We were
also able to compute χ(G) for queen6 6, queen8 8 and queen9 9 after finding
k-VCSs that are small enough to be solved by the exact coloring algorithm.
Finally, we only achieved a lower bound of k = N for queen10 10, queen15 15
and queen16 16.

The last set of instances in this category are the FullIns graphs, which
were built by adding extra nodes to critical graphs. These instances are
therefore perfect candidates for critical subgraph detection. To our knowl-
edge, the chromatic number of all theses instances was known except for
2-FullIns 4, 2-FullIns 5, 3-FullIns 4 and 4-FullIns 4. For these four graphs,
we were able to raise the best known lower bound to equal the best known up-
per bound, thus fixing the chromatic number. We have found, for k = χ(G),
k-VCSs in all these instances and could easily compute the chromatic num-
ber of these critical subgraphs using an exact coloring algorithm. Notice
that when applied on the orignal graph, the exact coloring algorithm could
only determine the chromatic number of 5 of these instances.

To finish, the bounds obtained for this category of instances are much
lower than the number of vertices of the critical subgraphs found. Knowing
that these instances most probably have large minimum critical subgraphs,
we come to the conclusion that LB gives poor results for this category of
instances.

7.8 Calculation time of detection algorithms

Since procedure Min accounts for almost all of the calculation complexity
of the critical subgraph detection algorithms6 the total CPU-time mainly
depends on the number of time this procedures is called (i.e. number of
iterations), as well as on the time spent on each call. We have implemented
procedure Min using a tabu search procedure (see Setion 4). If the tabu
search is stopped too early, its output is possibly not optimal, and this
induces errors that have to be repaired. On the other hand, if the tabu
search is run for a very long time, the detection algorithms, in turn, will take
a lot of time to complete their task. Instead of defining a general stopping
criteria that works reasonably well on all instances, we found easier tuning
the tabu search for each instance. Moreover, since our aim is not to design
the fastest possible critical subgraph detection algorithm, a small amount
of time has been spent on this tuning. Here are some general indications on

6Except for the hitting set algorithm which also uses MinHS.
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the total time needed to detect critical subgraphs using our tuning.
The detection of VCSs for the instances in tables 4 and 5, using the re-

moval and insertion algorithms, took a few seconds for the smaller instances
up to a few hours for the bigger ones. Furthermore, the pre-filtering al-
gorithm helped, in most cases, to lower the calculation time for the bigger
instances to under an hour. Notice however, these instances were the worst
encountered during experimentation. Indeed, the detection algorithms on
critical benchmark graphs took only a few seconds, using the speed-up tech-
nique. In addition, the detection algorithms generally took a few minutes
for instances which have cliques as minimum critical subgraphs. Finally, the
time needed to obtain lower bounds on the size of critical subgraphs, using
the hitting set algorithm and the lower bound algorithm, depends on the
quality sought for these bounds. In the case of the hitting set algorithm,
an hour is usually enough to produce a good bound, while a few minutes is
sufficient for the latter algorithm.

8 Conclusion

We have presented algorithms to find vertex-critical and edge-critical sub-
graphs of a given graph. We have also described algorithms to find minimum
critical subgraphs, as well as lower bounds on the size of these subgraphs. In
addition, we have shown that such critical subgraphs could be used to find a
lower bound on χ(G). Furthermore, because these algorithms need to solve
the NP-hard k-coloring problem, we have indicated how heuristic algorithms
for this problem can be used within the detection algorithms. Finally, we
have presented various strategies to accelerate the detection algorithms, to
find smaller critical subgraphs, and to correct errors that may occur because
of the use of heuristic algorithms.

Experiments were carried out on different types of instances to evaluate
the detection algorithms and to find lower bounds on the chromatic number.
Those experiments have shown that some detection algorithms are more ef-
ficient than others. For example, we saw that the pre-filtering algorithm
significantly reduces the number of iterations for the detection algorithms,
and serves as a good heuristic to find small critical subgraphs. Furthermore,
these experiments made it possible to identify on which instances the detec-
tion algorithms perform best. Using these results, we were able to improve
known lower bounds on χ(G) for some instances, and even to compute the
chromatic number of instances for which only bounds were known.
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Graph VCS
Rem Rem+h Ins Ins+h Filter+Ins HS LB

name |V | |E| χ |V ′| |V ′| |V ′| |V ′| |V ′| |V ′| |V ′|
R50.5 50 590 9 36,41,44 36,38,41 37,41,44 34,37,39 32,36,40 32,32,32 13,13,13
R60.5 60 858 10 48,51,53 44,46,48 49,52,54 45,46,48 43,44,46 ≥ 36 10,10,11
DSJC125.1 125 736 5 10,31,50 10,10,13 68,84,87 10,14,53 11,14,35 ≥ 10 4,4,5
queen6 6 36 290 7 25,27,29 26,27,27 27,28,30 24,27,28 22,24,27 22,22,22 7,7,7
queen8 8 64 728 9 57,58,59 54,55,56 56,58,60 54,55,56 53,55,56 ≥ 29 11,11,12
queen9 9 81 2112 10 - 73,74,74 - 73,74,75 73,75,76 - 12,12,13

Table 3: Detection heuristics impact and lower bounds of vertex-critical
subgraph

Graph VCS
Rem+h Ins+h Filter+Ins

|V | |E| k btk |V ′| |E′| btk′ |V ′| |E′| btk′ |V ′| |E′| btk′

100 496 5 92 38 137 109 55 207 271 38 138 122
100 447 5 193 66 263 233 62 234 333 63 242 282
100 499 5 33 38 137 63 44 160 66 42 156 55
100 507 5 135 46 175 105 51 198 151 42 151 237

110 600 5 114 34 119 32 61 244 201 41 151 116
110 555 5 45 36 126 40 50 188 98 36 123 97

. . . continued on next page
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Graph VCS
Rem+h Ins+h Filter+Ins

|V | |E| k btk |V ′| |E′| btk′ |V ′| |E′| btk′ |V ′| |E′| btk′

110 592 5 131 33 116 58 46 170 330 33 113 30
110 610 5 72 43 162 117 51 188 57 43 157 76

120 715 5 7105 32 113 59 52 199 157 42 156 31
120 669 5 45 21 63 10 38 134 16 33 108 32
120 714 5 1172 31 109 67 50 195 38 36 126 121
120 706 5 186 27 88 71 61 239 693 43 157 102

130 795 5 173090 31 108 30 42 150 87 35 115 39
130 832 5 62743 34 120 47 46 171 59 42 154 41
130 828 6 1519301 113 712 1493884 112 702 1898057 113 710 2094563
130 843 6 462073 100 617 415567 101 617 519210 99 605 323833

140 972 6 767916 99 625 1551179 102 637 1122434 99 615 970417
140 936 6 1130903 103 640 1610227 107 664 1439572 104 647 2775637
140 988 6 138308 83 499 137685 94 569 202552 88 522 149205
140 968 6 906265 105 654 4436370 108 681 1621338 104 643 3149618

150 1103 6 829224 96 610 1289371 99 622 887587 97 606 1164246
150 1098 6 109821 93 579 247208 95 581 148611 93 565 202147
150 1120 6 79497 81 481 133880 87 517 234917 88 531 274521
150 1128 6 194667 91 554 115757 98 606 112071 98 591 298509

160 1261 6 187661 87 539 347890 103 642 407695 94 582 520562
160 1251 6 101953 83 501 140258 95 580 126134 92 561 96891
160 1274 6 107938 79 474 71615 91 536 148744 83 497 81926
160 1279 6 199720 87 529 250846 103 647 7955344 93 564 257126

170 1430 6 (43603) 80 487 168991 97 597 340743 89 550 167544
170 1414 6 8320828 80 477 85597 96 581 490732 85 500 94995
170 1460 6 (45118) 69 405 7660 80 470 7367 73 421 10720
170 1440 6 70336660 85 516 193161 96 581 61871 93 563 207389

180 1603 6 (46199) 78 467 10347 102 613 294620 87 519 44426
180 1617 7 (44611) 158 1386 (41491) 159 1386 (42298) 158 1389 (41474)
180 1584 7 (45690) 168 1471 (45480) 168 1467 (45627) 168 1467 (45627)
180 1639 7 (43834) 148 1278 (37592) 148 1266 (39431) 150 1286 (39265)

190 1799 7 (49624) 147 1281 (39683) 156 1359 (41245) 152 1327 (41473)
190 1784 7 (47708) 152 1327 (41621) 157 1352 (43114) 154 1337 (41929)
190 1826 7 (49295) 140 1206 (38256) 152 1307 (40572) 141 1206 (38298)
190 1785 7 (49653) 158 1389 (44149) 160 1403 (43280) 160 1405 (44872)

200 2036 7 (50830) 139 1220 (46450) 147 1291 (46855) 148 1281 (45411)
200 1941 7 (48910) 153 1343 (63880) 155 1347 (64474) 155 1347 (63452)
200 2026 7 (46221) 130 1113 (44259) 150 1288 (60526) 148 1277 (47730)
200 1977 7 (47076) 146 1278 (46846) 147 1281 (47080) 152 1324 (48111)

210 2221 7 (61537) 134 1166 (34091) 148 1289 (37564) 144 1256 (37077)
210 2123 7 (54287) 146 1277 (38301) 157 1367 (39882) 154 1342 (40706)
210 2226 7 (64066) 129 1109 (33831) 143 1213 (35316) 136 1161 (35703)
210 2175 7 (59757) 139 1210 (36732) 153 1331 (38900) 149 1283 (38497)

220 2422 7 (62081) 132 1145 (32986) 148 1279 (37429) 139 1208 (35358)

. . . continued on next page
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Graph VCS
Rem+h Ins+h Filter+Ins

|V | |E| k btk |V ′| |E′| btk′ |V ′| |E′| btk′ |V ′| |E′| btk′

220 2348 7 (59384) 137 1188 (34917) 149 1290 (37488) 148 1281 (36713)
220 2435 7 (56396) 125 1070 (31717) 146 1259 (37417) 134 1144 (34620)
220 2387 7 (58686) 135 1166 (34208) 145 1241 (34873) 144 1245 (35136)

Table 4: Vertex-critical subgraph detection on 0.1 density random graphs

Graph VCS
Rem+h Ins+h Filter+Ins

|V | |E| k btk |V ′| |E′| btk′ |V ′| |E′| btk′ |V ′| |E′| btk′

80 1547 12 14029599 64 1051 1285350 66 1086 3887945 63 1007 726965
80 1528 12 12860059 59 911 293100 60 926 531284 58 884 429381
80 1609 13 7255750 75 1440 21670437 73 1380 6590146 72 1343 6387828
80 1582 13 58684771 75 1425 22694200 74 1389 14340999 73 1350 20529374

90 1924 13 128822599 74 1398 17898027 75 1402 30015939 71 1288 17201820
90 1984 13 133509732 72 1354 4320820 73 1374 7693584 72 1334 11737502
90 1978 14 (26310) 88 1908 (26010) 87 1870 (26268) 87 1870 (26253)
90 2003 14 (26271) 86 1858 (25914) 84 1783 (25912) 84 1783 (26381)

95 2223 14 (28823) 82 1723 (27079) 83 1754 (27116) 82 1703 (26512)
95 2149 14 (27836) 89 1931 (26961) 89 1935 (26994) 88 1896 (27510)
95 2223 14 (28861) 83 1777 (27784) 88 1906 (26981) 84 1797 (27024)
95 2208 14 (28553) 85 1834 (26831) 84 1780 (34611) 86 1841 (26097)

100 2381 14 (30027) 83 1748 (25375) 87 1869 (25959) 83 1724 (26025)
100 2444 14 (30107) 81 1690 (26861) 85 1828 (25663) 82 1711 (25304)
100 2469 15 (30328) 97 2345 (28932) 96 2297 (28595) 97 2342 (28454)
100 2465 15 (31121) 100 2465 (29744) 99 2425 (29499) 99 2414 (29335)

Table 5: Vertex-critical subgraph detection on 0.5 density random graphs

Graph VCS

name |V | |E| btk k |V ′| |E′| btk′ LB

myciel3 11 20 4 *4 11 20 - 11
myciel4 23 71 106 *5 23 71 - 23
myciel5 47 236 30998 *6 47 236 - 47
myciel6 95 755 (138446852) *7 95 755 - 95
myciel7 191 2360 (77223695) *8 191 2630 - 189

mug88 1 88 146 2204467 *4 88 146 - 55
mug88 25 88 146 942961 *4 88 146 - 56
mug100 1 100 166 1406570 *4 100 166 - 67
mug100 25 100 166 974170 *4 100 166 - 68

1-Insertions 4 67 232 104296036 *5 67 232 - 67
1-Insertions 5 202 1227 (133727661) 6 202 1227 - 202
1-Insertions 6 607 6337 (50929137) 7 607 6337 - 448

. . . continued on next page
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Graph VCS

name |V | |E| btk k |V ′| |E′| btk′ LB

2-Insertions 3 37 72 3064 *4 37 72 - 37
2-Insertions 4 149 541 (154902785) *4 37 72 - 14
2-Insertions 5 597 3936 (48458541) 6 597 3936 - 208
3-Insertions 3 56 110 723616 *4 56 110 - 56
3-Insertions 4 281 1046 (95076991) 5 281 1046 - 220
3-Insertions 5 1406 9695 (13784327) 6 1406 9695 - 73
4-Insertions 3 79 156 (228367528) *3 13 13 - 6
4-Insertions 4 475 1795 (70891706) 5 475 1795 - 232

fpsol2.i.1 496 11654 (169107715) *65 65 2080 0 24
fpsol2.i.2 451 8691 2 *30 30 435 0 24
fpsol2.i.3 425 8688 2 *30 30 435 0 24

inithx.i.1 864 18707 1 *54 54 1431 0 41
inithx.i.2 645 13979 (139157853) *31 31 465 0 25
inithx.i.3 621 13969 (141407783) *31 31 465 0 25

mulsol.i.1 197 3925 1 *49 49 1176 0 44
mulsol.i.2 188 3885 6 *31 31 465 0 24
mulsol.i.3 184 3916 6 *31 31 465 0 25
mulsol.i.4 185 3946 (161605284) *31 31 465 0 24
mulsol.i.5 186 3973 (161214648) *31 31 465 0 28

zeroin.i.1 211 4100 24 *49 49 1176 0 44
zeroin.i.2 211 3541 11472 *30 30 435 0 27
zeroin.i.3 206 3540 11472 *30 30 435 0 27

le450 15a 450 8168 (54447597) *15 15 105 0 7
le450 15b 450 8169 (49996287) *15 15 105 0 7
le450 15c 450 16680 (40481025) *15 15 105 0 3
le450 15d 450 16750 (35180270) *15 15 105 0 3
le450 25a 450 8260 14 *25 25 300 0 20
le450 25b 450 8263 12 *25 25 300 0 19
le450 25c 450 17343 (41188964) *25 25 300 0 7
le450 25d 450 17425 (42974825) *25 25 300 0 7
le450 5a 450 5714 (21467721) *5 5 10 0 2
le450 5b 450 5734 (28479480) *5 5 10 0 2
le450 5c 450 9803 5 *5 5 10 0 2
le450 5d 450 9757 5754158 *5 5 10 0 2

school1 385 19095 17 *14 14 91 0 2
school1 nsh 352 14612 (59393984) 14 14 91 0 2

anna 138 493 8 *11 11 55 0 11
david 87 406 36 *11 11 55 0 11
homer 561 1629 (244497375) *13 13 78 0 13
huck 74 301 211680 *11 11 55 0 11
jean 80 254 8645 *10 10 45 0 10

games120 120 638 (516246020) *9 9 36 0 9

miles1000 128 3216 4583894 *42 42 861 0 41

. . . continued on next page
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Graph VCS

name |V | |E| btk k |V ′| |E′| btk′ LB

miles1500 128 5198 1692256 *73 73 2628 0 73
miles250 128 387 (136594896) *8 8 28 0 8
miles500 128 1170 8 *20 20 190 0 20
miles750 128 2113 434 *31 31 465 0 28

DSJC125.1 125 736 227 *5 10 26 1 4
DSJC125.5 125 3891 (71844096) 14 80 1674 37453055 -
DSJC125.9 125 6961 (68250955) 40 78 2782 (205206643) -
DSJC250.1 250 3218 (42398413) 6 70 410 3621 -
DSJC250.9 250 27897 (33839645) 50 133 8052 (88911252) -

DSJR500.1 500 3555 (141520342) 12 12 66 0 11
DSJR500.1c 500 121275 (6401403) 63 63 1953 0 2
DSJR500.5 500 58862 (73970922) 26 26 325 0 1

queen5 5 25 160 1 *5 5 10 0 5
queen6 6 36 290 410 *7 25 148 45 7
queen7 7 49 476 2555 *7 7 21 0 5
queen8 12 96 1368 (139081460) *12 12 66 0 11
queen8 8 64 728 597552 *9 54 538 188021 11
queen9 9 81 2112 80603809 *10 74 897 135083408 12
queen10 10 100 2940 (134401345) 10 10 45 0 -

*11 89 1220 (424776367) 11
queen11 11 121 3960 (116006580) *11 11 55 0 6
queen12 12 144 5192 (101315208) *12 12 66 0 -
queen13 13 169 6656 (90800757) *13 13 78 0 6
queen14 14 196 8372 (83679129) *14 14 91 0 -
queen15 15 225 10360 (69555352) 15 15 105 0 -
queen16 16 256 12640 (72473005) 16 16 120 0 -

ash331GPIA 662 4185 14 *4 9 16 2 2

1-FullIns 3 30 100 7 *4 7 12 1 7
1-FullIns 4 93 593 5567 *5 15 43 6 14
1-FullIns 5 282 3247 (106523508) *6 31 144 271 19
2-FullIns 3 52 201 1850 *5 9 22 1 9
2-FullIns 4 212 1621 (209999176) *6 19 75 8 19
2-FullIns 5 852 12201 (91922086) *7 39 244 715 31
3-FullIns 3 80 346 366830 *5 5 10 0 5
3-FullIns 4 405 3524 (164058937) *7 23 116 10 23
3-FullIns 5 2030 33751 (34366333) *8 47 371 1675 -
4-FullIns 3 114 541 80247163 *7 13 51 1 13
4-FullIns 4 690 6650 (126559559) *8 27 166 12 25
5-FullIns 3 154 792 (448858523) *8 15 70 1 15

Table 6: Vertex-critial subgraph detection on Color04 graphs


