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Abstract

Given a graph G, the Shortest Capacitated Paths Problem (SCPP) consists of determining a set of paths of least
total length, linking given pairs of vertices in G, and satisfying capacity constraints on the arcs of G.

We formulate the SCPP as a 0-1 linear program and study two Lagrangian relaxations for getting lower bounds
on the optimal value. We then propose two heuristic methods. The first one is based on a greedy approach, while
the second one is an adaptation of the tabu search meta-heuristic.
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1. Introduction

Let G = (V, E) be an undirected graph where V = {v1, . . . , vn} is the vertex set and E
the edge set. A positive length ci j is associated to each edge (vi , v j ) in E . Consider a set
C = {(s1, t1), . . . , (sK , tK )} containing K pairs of vertices in G. The edge-disjoint paths
problem consists of determining whether there exist K mutually edge-disjoint paths in G
linking the pairs of vertices in C . This problem is known to be NP-complete (Middendorf
and Pfeiffer, 1993; Vygen, 1995).

The shortest disjoint paths problem consists of finding K edge-disjoint paths of least
total length, linking all pairs of vertices in C . This problem is at least as difficult as the
edge-disjoint paths problem described above and is therefore NP-hard.

Assume now that a positive weight σk is associated to each pair (sk, tk) in C . By extension,
we will say that a path linking sk to tk has weight σk . In addition, assume that each edge
(vi , v j ) ∈ E has a capacity ui j . The shortest capacitated paths problem (SCPP) consists of
determining K paths of least total length linking all pairs of vertices in C , and such that the
total weight of the paths going through any edge (vi , v j ) ∈ E does not exceed its capacity
ui j . The SCPP is NP-hard since it includes the shortest disjoint paths problem as a special
case, which is obtained by setting ui j = 1 for all edges (vi , v j ) in E and σk = 1 for all pairs
(sk, tk) in C .

Applications of the SCPP arise naturally in several contexts, e.g. in VLSI-design. Our
study has been motivated by a real-life problem at EDF (Electricité de France) dealing with
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the optimisation of the layout of cables in a power plant. Solutions methods actually used
by EDF determine cable paths one after the other, without any global vision of the data. A
reduction in the total cable length may help saving large sums of public money.

The SCPP can be viewed as a special case of the minimum cost integer multicommodity
flow problem. Ahuja, Magnanti, and Orlin (1993) have published a very complete survey
on the continuous multicommodity flow problem which is now well solved (McBride and
Mamer, 1997). A fast approximation algorithm has recently been proposed by Klein et al.
(1994) for an integer multicommodity flow problem with unit capacities. However, there
are apparently very few results concerning the problem including costs (or lengths) and
integrality constraints, even with demands (or weights) equal to one. Specific algorithms
have been proposed for particular cases, such as ring networks (Vachani et al., 1996). Notice
that if all pairs in C are equal, and all weights are equal to one, then the problem becomes
a minimum cost flow problem, and is therefore polynomially solvable.

This paper is organised as follows. In Section 2, we formulate the SCPP as an 0-1 linear
program. We then study two possible Lagrangian relaxations and compare the different lower
bounds obtained by solving the Lagrangian dual problems. Since the SCPP is NP-hard, we
focus in Section 3 on heuristic methods. We first generate various orderings of the pairs
in C ; for each such ordering, we use a greedy approach that builds the paths one after the
other. As second heuristic approach, we propose a tabu search algorithm. Computational
results are presented in Section 4. We show in Section 5 how a simple variation of the
SCPP can be used as a basic tool for the solution of the bandwidth packing problem in
telecommunication networks (Cox, Davis, and Qiu, 1991).

2. A 0-1 linear program and Lagrangian relaxations

In this section we first formulate the SCPP as a 0-1 linear program. For each edge (vi , v j )
in E and each pair (sk, tk) in C , we define a Boolean variable xi jk which is equal to one if
(vi , v j ) belongs to the path linking sk to tk , and zero otherwise. Since G is undirected, we
have xi jk = x jik and we can therefore only consider variables xi jk with i < j .

For each vertex vi in V and each pair (sk, tk) in C , we consider the Boolean variable yik

which is equal to one if and only if vertex vi belongs to the path linking sk to tk . Hence, yik

is necessarily equal to one if vi is equal to sk or tk . The SCPP can then be formulated as
follows.

Minimise
K∑

k=1

∑
(vi ,v j )∈E

i< j

ci j xi jk

Subject to
K∑

k=1

σk xi jk ≤ ui j ∀ (vi , v j ) ∈ E, i < j (1)

∑
(vi ,v j )∈E

j<i

x jik +
∑

(vi ,v j )∈E
i< j

xi jk = 2yik ∀ k ∈ {1, . . . , K }, ∀ vi 	= sk, tk

(2)
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∑
(vi ,v j )∈E

j<i

x jik +
∑

(vi ,v j )∈E
i< j

xi jk = 1 ∀ k ∈ {1, . . . , K }, vi = sk or tk (3)

xi jk = 0 or 1 ∀ k ∈ {1, . . . , K }, ∀ (vi , v j ) ∈ E, i < j (4)

yik = 0 or 1 ∀ k ∈ {1, . . . , K }, ∀ vi ∈ V (5)

Constraints (1) ensure that the capacity constraints are not violated while constraints (2)
and (3) impose that each pair (sk, tk) in C is linked by a path.

We now study two Lagrangian relaxations of this 0-1 linear program. We first relax
constraints (1), and then constraints (2) and (3). Readers not familiar with Lagrangian
relaxations are referred to Fisher (1981).

2.1. Capacity constraints relaxation

Let us associate a non-negative Lagrangian multiplier λi j to each edge (vi , v j ) ∈ E, i < j .
The Lagrangian relaxation of constraints (1) induces the following Lagrangian subproblem.

Minimise
K∑

k=1

∑
(vi ,v j )∈E

i< j

ci j xi jk −
∑

(vi ,v j )∈E
i< j

λi j

(
ui j −

K∑
k=1

σk xi jk

)

Subject to constraints (2), (3), (4) and (5).

The optimal value of this problem will be denoted L1(λ). The function to be minimised
can equivalently be written as follows.

K∑
k=1

∑
(vi ,v j )∈E

i< j

(ci j + λi jσk)xi jk −
∑

(vi ,v j )∈E
i< j

λi j ui j

The second term of this function does not depend on variables xi jk and yik . We can
therefore ignore it during the minimisation process. Moreover, the above relaxed problem
has no bundle constraints, linking variables associated with different values of k. Hence,
the Lagrangian subproblem can be decomposed into K independent subproblems. The
subproblem associated with the k-th element of C is defined as follows.

Minimise
∑

(vi ,v j )∈E
i< j

(ci j + λi jσk)xi jk

Subject to
∑

(vi ,v j )∈E
j<i

x jik +
∑

(vi ,v j )∈E
i< j

xi jk = 2yik ∀ vi 	= sk, tk

∑
(vi ,v j )∈E

j<i

x jik +
∑

(vi ,v j )∈E
i< j

xi jk = 1 for vi = sk or tk

xi jk = 0 or 1 ∀ (vi , v j ) ∈ E, i < j

yik = 0 or 1 ∀ vi ∈ V
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This is a shortest path problem in an undirected graph. Since the lengths, weights and
Lagrangian multipliers are non-negative (i.e., ci j + λi jσk ≥ 0), each subproblem can be
solved by means of Dijkstra’s algorithm (see for example Section 4.5 in Ahuja, Magnanti,
and Orlin (1993)).

In summary, L1(λ) can be determined by solving K independent shortest path problems.
The optimal value Z1 of the following Lagrangian multiplier problem is a lower bound on
the optimal value of the SCPP:

Z1 = max
λ≥0

L1(λ)

This lower bound can be obtained by means of classical subgradient optimisation methods
or multiplier ascent methods.

2.2. Paths constraints relaxation

Instead of relaxing constraints (1), we study here the Lagrangian multiplier problem obtained
by relaxing the paths constraints, that is constraints (2) and (3). We associate Lagrangian
multipliers µik to each vertex vi in V and each pair (sk, tk) in C . The relaxed problem to be
solved has the following form.

Minimise
K∑

k=1

∑
(vi ,v j )∈E

i< j

ci j xi jk

+
K∑

k=1

∑
vi ∈V

vi 	=sk ,tk

µik


2yik −

∑
(vi ,v j )∈E

j<i

x jik −
∑

(vi ,v j )∈E
i< j

xi jk




+
K∑

k=1

∑
vi ∈V

vi ∈{sk ,tk }

µik


1 −

∑
(vi ,v j )∈E

j<i

x jik −
∑

(vi ,v j )∈E
i< j

xi jk




Subject to constraints (1), (4) and (5).

The optimal value of this Lagrangian subproblem will be denoted L2(µ). The above
function can be rewritten in the following much simpler form.

K∑
k=1

∑
(vi ,v j )∈E

i< j

(ci j − µik − µ jk)xi jk + 2
K∑

k=1

∑
vi ∈V

vi 	=sk ,tk

µik yik +
K∑

k=1

∑
vi ∈V

vi ∈{sk ,tk }

µik

The last term of this function can be ignored during the minimisation process. Moreover,
since constraints (1) do not depend on variables yik , we can set yik equal to one if the
corresponding Lagrangian multiplier µik is negative, and zero otherwise. Notice that the
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above relaxed problem does not contain bundle constraints linking variables associated with
different edges of E . The Lagrangian subproblem can therefore be decomposed into |E |
independent subproblems. The subproblem associated with edge (vi , v j ) of E is defined as
follows.

Minimise
K∑

k=1

(ci j − µik − µ jk)xi jk

Subject to
K∑

k=1

σk xi jk ≤ ui j

xi jk = 0 or 1 ∀ k ∈ {1, . . . , K }

This is a knapsack problem which is known to be NP-hard, but for which efficient
exact solution methods have been developed (Martello and Toth, 1990). Notice that if all
weights σk are equal to one, then an optimal solution of the knapsack problem can easily
be determined. Indeed, let I be the subset of {1, . . . , K } containing all indices k such that
ci j − µik − µ jk is negative. If I contains at most ui j elements, then set xi jk = 1 if and only
if k ∈ I . Otherwise, sort I according to non-decreasing values of ci j − µik − µ jk , and set
xi jk = 1 if and only if k is among the ui j first elements in I .

The optimal value Z2 of the following Lagrangian multiplier problem is also a lower
bound on the optimal value of the SCPP:

Z2 = max
µ∈IR

L2(µ)

This lower bound can also be obtained by means of classical subgradient optimisation
techniques.

2.3. Comparison of bounds

Let Zc denote the optimal value of the linear programming problem obtained by relaxing
the integrality constraints of the SCPP. It is well-known that a lower bound obtained by a
Lagrangian relaxation technique is at least as sharp as Zc (see for example Section 16.4 in
Ahuja, Magnanti, and Orlin (1993)). Hence, we have Zc ≤ Z1 and Zc ≤ Z2.

A Lagrangian bound may be equal to a linear programming bound. Such a situation occurs
if the Lagrangian subproblem satisfies a property, known as the integrality property (see for
example Section 16.4 in Ahuja, Magnanti, and Orlin (1993)). A Lagrangian subproblem
satisfies the integrality property if, given any choice of coefficients in the objective function,
it has an integer optimal solution even if the integrality constraints are relaxed.

The Lagrangian subproblems defined at Sections 2.1 and 2.2 do not satisfy the inte-
grality property. Indeed, consider first the Lagrangian subproblem obtained by relaxing
constraints (1). We have seen that this problem can be solved by means of K independent
shortest path problem. The following example shows that the optimal value of a shortest
path problem can be strictly larger than the optimal value of its continuous relaxation.
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Consider a graph G with vertex set {a, b, c, d} and edge set {(a, b), (b, c), (c, d)}. Assume
that each edge has length 1. The problem consisting in finding the shortest path from a to
d in G can be formulated as follows.

Minimise xab + xbc + xcd

Subject to xab + xbc = 2yb

xbc + xcd = 2yc

xab = 1, xcd = 1

xbc, yb, yc = 0 or 1

The optimal value of this problem is 3 while the continuous relaxation has a minimum
value of 2, obtained by setting xbc = 0 and yb = yc = 0.5.

We have shown in Section 2.2 that the Lagrangian subproblem obtained by relaxing
constraints (2) and (3) can be solved by means of |E | independent knapsack problems.
Again, the optimal value of a knapsack problem can be strictly larger than the optimal value
of its continuous relaxation. Indeed, consider the following example.

Minimise −x1 − x2

Subject to 2x1 + 2x2 ≤ 3

x1, x2 = 0 or 1

In this example, the optimal value is −1 while the continuous relaxation has a minimum
value of −1.5.

The situation is different if all weights σk in the SCPP are equal to 1. Indeed, we have
seen in Section 2.2 that in such a case, L2(µ) has an optimal integer solution, even if we
relax the integrality constraints. We have therefore Z1 ≥ Zc = Z2, which means that the
first lower bound Z1 is always as least as sharp as the second one Z2.

3. Heuristic methods

We describe in this section two heuristic methods for the solution of the SCPP. The first one
has been proposed by Turki (1997), and is based on a greedy approach, while the second one
is a tabu search algorithm. Both heuristics use the same following basic concepts. A solution
of the SCPP is defined as a set of paths Pk(1 ≤ k ≤ K ) linking each pair (sk, tk) of vertices in
C . Notice that we do not impose that a solution satisfies the capacity constraints. A solution
is called feasible if the total weight of the paths going through any edge (vi , v j ) ∈ E does
not exceed its capacity ui j . A partial solution S (possibly infeasible) is a set of paths linking
only a subset of pairs of vertices in C . We denote I (S) the set of indices k such that sk is
linked to tk by a path Pk in S.

Let S be a partial feasible solution, and let (sk, tk) be a pair of vertices in C which is not
linked by a path in S (i.e., k 	∈ I (S)). We define the following graph G(S, (sk, tk)) which
indicates how a path linking sk to tk can be added to S without violating the capacity
constraints. The graph G(S, (sk, tk)) is obtained from G by removing all edges (vi , v j )
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such that, given the routes in S, the residual capacity on (vi , v j ) is not large enough for an
additional route linking sk to tk and going through (vi , v j ). More precisely, the edge (vi , v j )
is removed from G if σk + ∑

r∈I (S)
(vi ,v j )∈Pr

σr > ui j .

The proposed heuristic methods work with two different objective functions. The first,
F1(S) is simply the total length of solution S. As we allow infeasible solutions during the
search process, we also define an artificial objective F2(S) = F1(S) + α�(S), where α is
a self adjusting parameter (see Section 3.2) and �(S) is the total overload on the edges,
that is:

�(S) =
∑

(vi ,v j )∈E

Max


0,


 ∑

k∈I (S)
(vi ,v j )∈Pk

σk − ui j







We denote F1* and F2* the best known values of F1 and F2, respectively.

3.1. A multi-start greedy approach

The first heuristic described in this paper has been developed by Turki (1997), and uses a
greedy approach which, given an ordering of the pairs of vertices in C , builds the paths
one after the other, taking care of not violating the capacity constraints. If the greedy
procedure can successfully determine K paths, then the solution provided by this algorithm
is necessarily feasible. Various randomly generated orderings are given as input to the
greedy procedure. This multi-start greedy heuristic is called GREEDY(N ), where N is the
number of different orderings submitted to the greedy procedure. It is described in figure 1.

Notice that the above algorithm does not necessarily produce a feasible solution, even
if such a solution exists and all permutations of the pairs in C are tested. Indeed, consider

Figure 1. A greedy algorithm for the SCPP.
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Figure 2. A bad example for GREEDY(N).

the example in figure 2. The unique feasible solution is made of paths P1 = {(s1, a), (a, t1)}
and P2 = {(s2, a), (a, t2)}. The GREEDY(n) algorithm does not find such a solution since
the shortest path from s1 to t1 goes through s2, and the shortest path from s2 to t2 goes
through s1.

3.2. A tabu search approach

We now describe an adaptation of the tabu search technique to the SCPP. Readers not
familiar with this meta-heurisitic are referred to Reeves (1993). The proposed algorithm
handles solutions that are not necessarily feasible. Each violation of the capacity constraints
is penalised. The use of large penalties helps intensifying the search in feasible regions of
the search space, while small penalties tend to diversify the search towards new regions of
the search space.

The tabu search algorithm, called TABU SCPP uses two improvement procedures. The
first one, called 1-OPT tries to improve a feasible solution S by replacing paths in S by
shorter ones. We take care of not violating the capacity constraints. More precisely, let
(sk, tk) be a pair of vertices in C such that the path Pk linking sk to tk in S is not the
shortest possible one. We first construct a partial solution S′ obtained from S by removing
Pk . We then determine the shortest path linking sk to tk in G(S′, (sk, tk)). If this path is
shorter than Pk , we add it to S′ to build the new solution S. This process is repeated until
no path in S can be improved. The pseudo-code of this improvement procedure is given in
figure 3.

Figure 3. First improvement procedure.
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Figure 4. Second improvement procedure.

The second improvement algorithm, called 2-OPT, removes two paths from the current
solution S and tries to replace them by paths of smaller total length. Here again, we take
care of not violating the capacity constraints. When two paths Pr and Pq , linking sr to tr
and sq to tq , are removed, we determine two shortest possible paths by first connecting sr to
tr before sq to tq , and then by connecting sq to tq before sr to tr . This algorithm is described
in figure 4.

The above two improvement procedures are included in TABU SCPP which is now
described in details. Let S be a solution, (sk, tk) a pair of vertices in C , and (vi , v j ) an
edge on the path Pk linking sk to tk in S. Let S′ be the partial solution obtained from S
by removing Pk , and let α be the penalty parameter used in the definition of the objective
function F2. We define a new graph H (S, (sk, tk), (vi , v j )) which is obtained from G as
follows. We first remove the edge (vi , v j ) from G. To each other edge (va, vb) in G, we
add α to cab if, given the routes in S′, the residual capacity on (va, vb) is not large enough
for a route linking sk to tk and going through (va, vb). More precisely, the new graph has
the same vertex set V as G, while its edge set is equal to E\{(vi , v j )}. The length c′

ab of an
edge in H (S, (sk, tk), (vi , v j )) is defined as follows:

c′
ab =




cab + α if σk +
∑

r∈I (S′)
(va ,vb)∈Pr

σr > ui j

cab otherwise

The solution obtained by adding to S′ the shortest path P linking sk to tk in H (S, (sk, tk),
(vi , v j )) is called a neighbour solution of S. Notice that P is necessarily different from the
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path Pk in S since it does not contain edge (vi , v j ). Moreover, the new path P linking sk to
tk tries to avoid going through edges having not enough residual capacity.

A neighbour solution S′ of S is thus obtained by modifying a path linking a pair (sk, tk)
of vertices of C . When moving from S to S′, the pair (sk, tk) is declared tabu for θ iterations,
where θ is randomly selected in a given interval [θ1, θ2]. By extension, a solution obtained by
modifying the path linking a tabu pair of vertices is called a tabu solution. This variable tabu
list length strategy was inspired from Taillard’s work (1991). After extensive experiments
on the application of tabu search to the quadratic assignment problem, this author concludes
that the probability of obtaining a global optimum is increased in the case of a variable list
length. According to preliminary experiments, we use θ1 = � K

6 � and θ2 = � K
3 � in our

implementation.
The neighbourhood N (S) of S can be very large and we have therefore decided to explore

only part of it. This is simply done by randomly generating a fixed number M of neighbours
and choosing the best one which is not tabu. A low value of M tends to produce low
quality solutions; in contrast, running times become excessive with high values of M . As a
compromise, we use M = � K

5 � in our implementation.
As mentioned at the beginning of Section 3, the artificial objectif function F2 depends on

a penalty parameter α. All too often, choosing an appropriate value of α is difficult, and a
wrong choice can have an adverse impact on the performance of the algorithm. Therefore,
as suggested by Hertz (1992), we define α as a self adjusting parameter. Initially, α is set
equal to 1. Every MODIF α iterations, α is halved if all previous MODIF α solutions were
feasible and doubled if they were all infeasible. We found the algorithm is not very sensitive
to the value of MODIF α. We use Modif α = 20 in our implementation.

The search process ends when the number of consecutive iterations without improvement
of F1* or F2* reaches a given value Max Iter. If Max Iter is too low, some good solutions will
be missed. If it is too high, there is a risk that the algorithm will run for a long time without
improvement. Sensitivity analysis performed on test problems suggest that Max Iter = 500
is a good compromise.

The pseudo-code of the TABU SCPP algorithm is given in figure 5.

4. Computational results

The GREEDY and TABU SCPP algorithms were coded in C and run on a Silicon Graphics
Indigo2 machine (195 MHz, IP28 processor). They were tested on 18 different problem
types which are summarised in Table 1. For each problem type, ten instances were generated
according to a procedure described in Turki (1997). This gives a total of 180 instances which
range in size from n = 100 to 1000 vertices, and from K = 25 to 1000 pairs of vertices in C .
The procedure in Turki (1997) which generates instances can be described as follows. The
vertices are first randomly generated in the [0, 1]2 square. A first set of edges is generated by
constructing a random spanning tree on these vertices. Additional edges are then randomly
generated until the total number of edges is equal to 3n

2 . Hence, the average number of
neighbours of each vertex is equal to three. The weights σk of the pairs (sk, tk) of vertices in
C are either set equal to one unit (in problem types 1–10), or randomly generated according
to a discrete uniform distribution on [1, 10] (in problem types 11–18).
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Figure 5. A tabu search algorithm for the SCPP.
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Table 1. Description of the problem types.

Problem Number n Number K of
type of vertices pairs in C Weights σk Capacities ui j

1 100 25 1 Random choice in [1, 5]

2 100 50 1 Random choice in [1, 10]

3 100 75 1 Random choice in [1, 15]

4 100 100 1 Random choice in [1, 25]

5 200 50 1 Random choice in [1, 5]

6 200 100 1 Random choice in [1, 15]

7 200 150 1 Random choice in [1, 25]

8 200 200 1 Random choice in [1, 35]

9 500 500 1 Random choice in [1, 50]

10 1000 1000 1 Random choice in [1, 50]

11 100 100 Random choice in [1, 10] Random choice in [1, 200]

12 200 200 Random choice in [1, 10] Random choice in [1, 300]

13 500 500 Random choice in [1, 10] Random choice in [1, 350]

14 1000 1000 Random choice in [1, 10] Random choice in [1, 70]

15 100 100 Random choice in [1, 10] Random choice in [1, U]

16 200 200 Random choice in [1, 10] Random choice in [1, U]

17 500 500 Random choice in [1, 10] Random choice in [1, U]

18 1000 1000 Random choice in [1, 10] Random choice in [1, U]

If the edge capacities are not large enough, then the SCPP has no feasible solution.
Given an instance of the SCPP, let U be the smallest integer such that GREEDY(100) is
able to determine a feasible solution, assuming that the capacities ui j of the edges (vi , v j )
are randomly selected according to a discrete uniform distribution in [1, U ]. Two kinds of
edge capacities were considered. In a first set of experiments, the capacities were randomly
chosen in the interval [1, U ] (problem types 15–18). A second set of easier instances were
generated by randomly selecting each edge capacity in the interval [1, x], where x is strictly
larger than U (problem types 1–14).

In Table 2, we compare the results produced by TABU SCPP with those obtained by the
multi-start greedy algorithm GREEDY(N ), by setting N = 500 and N = 5000. The 2-OPT
procedure used in TABU SCPP induces very large CPU-times for large size problems. We
have therefore implemented a simplified version of TABU SCPP, in which no call to 2-OPT
is performed in Steps 3 and 5. This modified version of the tabu search algorithm is called
FAST TABU.

The results are summarised in Table 2. For each problem type, we report the average and
worst percentage deviations of the heuristic solution value over the lower bound Z1 defined
in Section 2.1. The CPU-times are given in seconds.

It clearly appears that optimal or near-optimal solutions can easily be obtained for in-
stances having unit weights σk (i.e., problem types 1–10). Indeed the GREEDY algorithm
produces solutions which are on average less than 0.5% away from the lower bound, and
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this deviation is never worse than 1.7%. The situation is even better with TABU SCPP
since this algorithm is able to determine solutions with an average deviation not larger than
0.05%, and a worst deviation of 0.4%.

The heuristic solution values of the problems in which the edge weights are randomly
generated in the interval [1, 10] (i.e. problem types 11–18) have a larger deviation over
the lower bound Z1. Relatively larger gaps can be observed for instances where the edge
capacities are randomly selected according to a discrete uniform distribution in [1, U ] (i.e.,
problem types 15–18). However, the TABU SCPP algorithm has systematically smaller
gaps than the GREEDY algorithm. Notice also that part of this gap may be due to the
difference between the lower bound and the global optimal value.

While TABU SCPP is faster then GREEDY(5000) for instances having up to 500 ver-
tices, the situation is the opposite for larger size instances. This phenomenon can easily
be explained by the use of the 2-OPT improvement algorithm in TABU SCPP. Indeed, the
2-OPT procedure solves O(K 2) shortest path problems on graphs with n vertices. These
shortest paths are determined by means of the O(n2) Dijkstra’s algorithm. Since K is propor-
tional to n, it follows that the 2-OPT procedure has an O(n4) complexity. For comparison,
GREEDY(N ) has to solve N shortest path problems, which gives an O(Nn2) complexity.

The FAST TABU algorithm avoids the use of the 2-OPT procedure, and its CPU-time is
therefore competitive when compared with GREEDY(5000), even for large size instances.
Notice also that FAST TABU generally provides better solutions than GREEDY(5000).
However, while FAST TABU is faster than TABU SCPP, it gives solution values with
larger deviations over the lower bound Z1.

Since the CPU-time of GREEDY(N ) increases linearly with N , one can easily get a very
fast heuristic method for the SCPP by choosing small values for N . It can however be noticed
that while the GREEDY(500) algorithm has about the same CPU-times as FAST TABU, it
produces solutions with noticeably larger average deviations.

5. Relation with the bandwidth packing problem

The bandwidth packing problem (BWP) arises in the area of telecommunications, and has
first been introduced by Cox, Davis, and Qiu (1991). It can be described as follows. Consider
a set C = {(s1, t1), . . . , (sK , tK )} containing K pairs of vertices in a capacitated network G.
Each pair (sk, tk) (1 ≤ k ≤ K ) corresponds to a call request, with source node sk , terminal
node tk , non-negative bandwidth requirement σk , and known revenue rk . Each call (sk, tk)
can be assigned only to a node-simple path P in G, and such an assignment induces a profit

πk = rk − σk

∑
(vi ,v j )∈P

ci j

where ci j is a unit cost on edge (vi , v j ) in G.
The BWP consists of selecting a subset of calls in C , and of assigning the selected calls

to paths in the network, while satisfying capacity restrictions on G and maximising the total
profit. More precisely, consider the Boolean variable zk which is equal to one if and only if
call (sk, tk) is selected in C in order to be routed in G. The BWP can then be formulated as
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follows:

Maximise
K∑

k=1

rk zk −
K∑

k=1

σk

∑
(vi ,v j )∈E

i< j

ci j xi jk

Subject to constraints (1), (2), (4) and (5) of Section 2∑
(vi ,v j )∈E

j<i

x jik +
∑

(vi ,v j )∈E
i< j

xi jk = zk ∀ k ∈ {1, . . . , K }, vi = sk or tk (3′)

zk = 0 or 1 ∀ k ∈ {1, . . . , K } (6)

Proposed solution methods for the BWP are based on tabu search (Anderson et al.,
1993; Laguna and Glover, 1993), genetic algorithms (Cox, Davis, and Qiu, 1991), column
generation (Parker and Ryan, 1995) and integer programming (Park, Kang, and Park, 1996).

Given a subset of selected calls in C , the bandwidth packing subproblem (BWPS) consists
of finding the best routing of these selected calls. More precisely, assume without loss of
generality that zk = 1 for k = 1, . . . , K ′, and zk = 0 for k = K ′ + 1, . . . , K . The BWPS
can then be formulated as follows:

Maximise
K ′∑

k=1

rk −
K ′∑

k=1

σk

∑
(vi ,v j )∈E

i< j

ci j xi jk

Subject to constraints (1), (2), (3), (4) and (5) of Section 2
(where K must be replaced by K ′)

The first term of the above objective function is constant and can therefore be ignored.
Hence, the BWPS can be rewritten as the following constrained minimisation problem:

Minimise
K ′∑

k=1

∑
(vi ,v j )∈E

i< j

σkci j xi jk

Subject to constraints (1), (2), (3), (4) and (5) of Section 2
(where K must be replaced by K ′)

The above problem is very close to the SCPP. The unique difference appears in the
objective function: if the edge (vi , v j ) belongs to the path linking sk to tk , then its cost is ci j

in the SCPP, and σkci j in the BWPS.
It is not difficult to adapt to the BWPS all developments presented in Sections 2 and

3. For example, as noticed in Section 2.1, the Lagrangian relaxation of constraints (1)
induces a Lagrangian subproblem which can be decomposed into K independent shortest
path problems. If the original problem is the BWPS, then the cost of an edge (vi , v j ) ∈ E
in these subproblems is equal to σk(ci j + λi j ) (to be compared with ci j + λi jσk for the
SCPP). Similarly, we have observed that the Lagrangian relaxation of the path constraints
induces a Lagrangian subproblem which can be decomposed into |E | independent knapsack
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problems. When dealing with the BWPS, the cost of the k-th object must be set equal to
σkci j − µik − µ jk (to be compared with ci j − µik − µ jk for the SCPP).

In summary, a possible approach for the solution of the BWP consists of iteratively
generating subsets of calls in C . For each such subset, the best routing in G of the selected
calls can be determined by solving the BWPS which is a variation of the SCPP.

6. Conclusions

We have determined two lower bounds and developed two heuristic methods for the Shortest
Capacitated Paths Problem. This problem arises in several applications, e.g. in VLSI-design.
The first proposed heuristic method, called GREEDY(N ), is based on a greedy approach
and provides good solutions within reasonable computing times. However, we have shown
that instances can easily be generated such that this greedy algorithm has not the slightest
chance to find a feasible solution to the SCPP, while such a solution exists.

We have then developed a tabu search algorithm, called TABU SCPP, which provides
solution values with a very small average deviation over a computed lower bound. The
TABU SCPP algorithm uses two improvement procedures, one of them being very time
consuming for large size instances. We have therefore implemented a simplified version
of TABU SCPP, called FAST TABU which does not use this improvement procedure. We
have observed that FAST TABU generally produces better solutions than GREEDY(5000),
but is about ten times faster.

The above mentioned heuristic algorithms have been successfully used in a real-life
context, for the layout of cables in a power plant. Moreover, as shown in Section 5, a
simple variation of the SCPP can help for the solution of the more difficult BWP. Indeed,
the BWP consists of selecting calls from a list of requests, and of routing these selected
calls in a telecommunication network. For a given selection of calls, the best routing can
be determined by solving the BWPS which is very close to the SCPP.
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