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Avant-propos

My main research interest is nonsmooth optimization:

(NLP ) minimize f(x)
subject to x ∈ Ω,

where f : Rn → R ∪ {∞} may be discontinuous,
and Ω is any subset of Rn

and:

evaluation of f and of the functions defining Ω are usually the
result of a computer code (a black box)

the functions are nonsmooth, with some ’if’s and ’goto’s

the functions are expensive black boxes - secs, mins, days

the functions may fail unexpectedly even for x ∈ Ω
only a few correct digits are ensured

accurate approximation of derivatives is problematic

the constraints defining Ω may be nonlinear, nonconvex,
nonsmooth and may simply return ’yes/no’.
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Playing with model formulations

3 A direct search algorithm
The Mesh Adaptive Direct Search algorithm
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Controlling tsunami risk

A tsunami is a long wave. The most dangerous are caused by
magnitude ≥ 7.5 earthquakes on the ocean floor. There is
evidence that underwater landslides and volcanic eruptions
have caused tsunamis.

Education is important: A December 04 tsunami in the Indian
Ocean killed hundreds of thousands because of a lack of
education and a lack of warning.

Detection is important: A 3 meter tsunami hitting the Los
Angeles docks without warning could disrupt the US economy.

Accurate prediction is important: A tsunami was correctly
predicted to hit Hawaii in 1994. The total evacuation cost
about 60million$US. The 18inch tsunami arrived at the
predicted time and the ”I survived the tsunami” T-shirts went
on sale at Hilo Hattie’s soon after.
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DART mooring system

Deep ocean Assessment and
Reporting of Tsunamis (DART)
buoys are sensors on the ocean
floor with a communication
connection to a surface buoy.
The tsunami amplitude they
detect feeds prediction.

DART buoys cost about
250,000$US + the cost of
deployment and maintenance.
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Tsunami reporting responsibility within NOAA
(National Oceanic and Athmospheric Administration)

This is my personal understanding of the NOAA structure: there
are surely subtleties I am missing, but for the purposes of this talk

PMEL (Pacific Marine Environmental Lab) developed the
buoys and recommends where they are deployed.

NDBC (National Data Buoy Center) manufactures, deploys,
and maintains the buoys

PMEL monitors the buoy data and provides forecasts to the
National Weather Service (NWS).

NWS issues warnings and alerts to the public.

A budget for 35-40 buoys was given to PMEL. They quickly
realized that positioning them in the vast Pacific involved
optimization, and contacted members of the optimization
community.
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The challenge

Two groups are involved: the optimization group (us), and the
PMEL tsunami scientis.

Initially, the optimization group knows nothing about DART
placement.

Initially, PMEL does not know much about optimization.

Major difficulty: different technical languages

How does the underwater landscape affect the detection
amplitude of the DART buoy ?
What is it that they really wish to optimize ? What are the
constraint ? The objective function ?

John Dennis spent two months at the PMEL headquarters learning
about the problem, and teaching them notions of optimization.
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PMEL’s perspective

Numerical optimization is the process of using an algorithm to
minimize or maximize a function subject to equality or
inequality constraints.

The idea is to model DART array placement as a numerical
optimization problem.

Optimization modeling requires specifying appropriate decision
variables, objective function, and constraints so that the
formalism models the real-world problem adequately and
provides a solvable problem.

Modeling is inherently interdisciplinary, and it is not easy.
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Optimization format for NOMAD

NOMAD is our derivative-free nonlinear programming algorithm. It
has been used successfully on many real-world problems.

NOMAD wants a problem in the form:

min
x∈Ω

f(x)

where Ω ≡ {x ∈ X : C(x) ≤ 0} ⊂ Rn.
The constraints are partitioned into two groups.

X contains the closed constraints.

C(x) ≤ 0 are called the open constraints.
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Open, closed and hidden constraints

Consider the toy problem:

min
x∈R2

x2
1 −
√
x2

s.t. −x2
1 + x2

2 ≤ 1
x2 ≥ 0

Closed constraints must be satisfied at every trial vector of
decision variables in order for the functions to evaluate.
Here x2 ≥ 0 is a closed constraint, because if it is violated,
the objective function will fail.
Open constraints must be satisfied at the solution, but an
optimization algorithm may use some trial points that violate
it. Here −x2

1 + x2
2 ≤ 1 is an open constraint.

Lets change the objective. x2 6= 0 is now an hidden constraint.
f is set to ∞ when x ∈ Ω but x fails to satisfy an hidden
contraint.
DART placement has nasty closed and hidden constraints.
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The optimization group’s perspective

The PMEL scientists possess a lot of data on tsunamis but it
is not organized in the form of an optimization problem.

The followings slides represent examples of the raw data.
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Preliminary placement by a panel of experts
DART Network 2
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PMEL scientists can forecast arrival time given the source

↗
Tsunami source
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PMEL scientists can forecast arrival time given the source

↖
First buoy to detect

the tsunami
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PMEL scientists can forecast arrival time given the source

The red sites do not have
a 3 hours warning time
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PMEL scientists can forecast arrival time given the source

The green sites have
≥ 3 hours warning time
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PMEL scientists can predict intensity given the source

Level sets of the intensity of a tsunami wave and of travel time.
Charles Audet (JOPT 2007) Buoy placement optimization 15 / 37



A non-smooth problem

Source – http://nctr.pmel.noaa.gov/Mov/andr1.mov
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The building blocks of an optimization model

How can this information be used to construct an optimization
model, suitable for our software NOMAD.

The preliminary placement can obviously serve as a starting
point for our method.

Travel time of the wave can be turned into a function

Intensity of the wave can be turned into a function

Warning time can be turned into a function

...

Building blocks (computer codes that return various function
values) can be elaborated.
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What do PMEL scientists want DART to do?

Detect tsunamis within 1 hour ⇒ put the buoys close to the
sources - call this timely detection.

Avoid data corruption from earthquake ⇒ but not too close
to the source - call this not too close.

Avoid weak signals ⇒ put buoys in the main tsunami beams -
call this sufficient detection amplitude.

Avoid unsuitable bottom conditions ⇒ weird yes/no
optimization constraint - call this bottom conditions.

Have multiple buoys able to achieve these goals for each
source ⇒ another strange nondifferentiable optimization
constraint - call this sensor coverage.

Given some buoys positions, PMEL produced software that
measures these quantities. The cpu time for these computations is
of the order of 30 seconds.
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First problem formulation

First we tried to optimize:
min (time to detection)
subject to buoy placements that satisfy:

the closed constraints:

bottom conditions
not too close

the open constraints:

sufficient detection amplitude
sensor coverage
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First test problem - the domain
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First test problem - NOMADm results
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What did we learn from the first test problem ?

Two NOMAD variants converged in an hour to reasonable
solutions for this test problem

The detection time was adequate (the objective function)

Unfortunately, the solutions did not satisfy every constraints
of the initial model. To satisfy the open sensor coverage
constraint, we had to loosen the required tsunami detection
amplitude constraints to lower levels

The conclusion of this first model is that we do not have enough
buoys to achieve the specified tsunami detection amplitude and
sensor coverage constraints for 7.5 earthquakes.

The objective was satisfactory. So tried a second test problem:
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Second problem formulation

To nail down how much we miss the data quality requirement we
solved:

max (tsunami detection amplitude) ⇐ was a ≥ constraint

subject to buoy placements that satisfy:

the closed constraints:

bottom conditions
not too close

the open constraints:

adequate time to detection ⇐ was the objective
sensor coverage
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What did we learn from the second test problem ?

Again MADS converged in an hour.
The buoys found the “sweet spots” in the overlaps of highest
amplitude envelopes and paired up there

The extra buoys wandered off in the feasible region, clearly
out of any useful detection amplitude.
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Collaboration is an iterative process

Coming out with the formulation of the first test problems took
several days.
Solving with NOMAD was rapid.

The second test problem was generated faster than the first.
Solving with NOMAD was again rapid.

In summary, NOMAD is used as a tool by the decision makers.
The solutions provided by NOMAD allow the user to refine the
model, and his interpretation of objectives and constraints.
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The Mesh Adaptive Direct Search algorithm

MADS is a derivative-free, direct search class of methods that
targets problems of the form:

minimize f(x)
subject to x ∈ Ω,

Problem: f,Ω

Starting point: x0

MADS Solution x̂
-

-

-

The optimality conditions that MADS guarantees on x̂ are
’proportional’ to the smoothness of f and Ω.
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A MADS iteration
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Barrier approach to closed constraints

To enforce X constraints, replace f by a barrier objective

fX(x) :=
{
f(x) if x ∈ X,
+∞ otherwise.

Then apply the unconstrained algorithm to fX .

Remarks :

The quality of the limit solution depends the local smoothness
of f , not of fX .

This approach can handle strict inequalities.

Expensive evaluations of f are saved when x is found to be
infeasible.
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Filter approach to open constraints

Define the nonnegative constraint violation function

h(x) :=
∑
j

max(0, cj(x))2

Remarks :

h(x) = 0 if and only if all open constraints are satisfied.

Accept a new trial points if it is feasible and improves f or if
it is infeasible but improves h.

Charles Audet (JOPT 2007) A direct search algorithm 32 / 37



Presentation Outline

1 Tsunamy warning buoys

2 Buoy placement optimization
Initiating the collaboration
The building blocks of an optimization model
Playing with model formulations

3 A direct search algorithm
The Mesh Adaptive Direct Search algorithm
Summary of convergence analysis

4 Conclusions and plans



Hierarchy of MADS convergence results

Regardless one the smoothness of the function, there exists a
convergent subsequence of mesh local optimizers xk → x̂ on
meshes that get infinitely fine.

If f is Lipschitz near any such limit x̂ and if THΩ (x̂) 6= ∅, then
with probability 1, x̂ is a Clarke stationary point of f over Ω:

f◦(x̂; v) ≥ 0,∀v ∈ TClΩ (x̂).

Furthermore, if f is strictly differentiable at x̂ and if Ω is
regular at x̂, then with probability 1, x̂ is a contingent KKT
stationary point of f over Ω: ∇f(x̂)T v ≥ 0,∀v ∈ TCoΩ (x̂),
where TCoΩ (x̂) is the contingent cone to Ω at x.

Furthermore, if f is twice strictly differentiable at x̂ and
∇2f(x̂) is non-singular, and if Ω locally convex near x̂, then
with probability 1, x̂ is local minimizer of f over Ω:

∃ε > 0 such that f(x̂) ≤ f(y),∀y ∈ Ω ∩Bε(x̂).
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Conclusions

NOMADm solved several tweaks of the first two test problem
easily and quickly.

Collaboration is an iterative process.
0- Learn each other’s language
1- Build an initial model
2- REPEAT
3- Solve the model
4- Interpret the results
5- Adapt, adjust and correct the model
6- UNTIL a satisfactory solution is found.

Step 0 is hard. But once it is done, things progress rapidly.

Collaboration between both groups is essential in steps 0,1,4
and 5.
PMEL is the judge for step 6.
Our optimization team handles step 3 using NOMAD.
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Plans

Continue to work with NOAA/PMEL tsunami experts to
refine the formulation to get answers they like.

Tailor the underlying MADS algorithm to algorithms with this
block structure - this should have a great payoff for a whole
class of similar sensor location problems.

Publicity: session WA9 at 10h30 has talks that discuss MADS.

NOMAD is Gilles Couture’s c++ industrial strength
implementation, freely available at www.gerad.ca/NOMAD

NOMADm is Mark Abramson’s matlab implementation
freely available at
www.afit.edu/en/enc/Faculty/MAbramson/nomadm.html

MADS is in the GADS mathworks matlab toolbox.

Thank you for your attention.
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